(完整word版)高中数学数列知识点总结(经典)(2),推荐文档.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《(完整word版)高中数学数列知识点总结(经典)(2),推荐文档.pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学数列知识点总结(经典)(2),推荐文档.pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学期末复习专题解三角形1正弦定理:2sinsinsinabcRABC:sin:sin:sina b cABC.2余弦定理:2222222222cos2cos2cosabcbcAbacacBcbabaC或222222222cos2cos2cos2bcaAbcacbBacbacCab.3正、余玄定理的解题类型:(1)两类正弦定理解三角形的问题:已知两角和任意一边,求其他的两边及一角.已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:已知三边求三角.已知两边和他们的夹角,求第三边和其他两角.4判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5解题
2、中利用ABC中:ABC,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin,ABC cos()cos,ABCtan()tan,ABCsincos,cossin,tancot222222ABCABCABC.6、三角公式:(1)倍角公式:(2)两角和、差公式:1 数列基础知识点和方法归纳1.等差数列的定义与性质(1)定义:1nnaad(d 为常数),通项公式:11naand(2)等差中项:xAy,成等差数列2Axy(3)前 n项和:11122nnaann nSnad(4)性质:na是等差数列任意两项间的关系式;anam(nm)d(m、nN)若 mnpq,则mnpqaaaa;232
3、nnnnnSSSSS,仍为等差数列,公差为dn2;若三个成等差数列,可设为adaad,若nnab,是等差数列,且前 n项和分别为nnST,则2121mmmmaSbTna为等差数列2nSanbn(ab,为常数,是关于 n的常数项为 0 的二次函数)nS的最值可求二次函数2nSanbn的最值;或者求出na中的正、负分界项,即:当100ad,解不等式组100nnaa可得nS达到最大值时的 n值.当100ad,由100nnaa可得nS达到最小值时的 n值.项数为偶数n2 的等差数列na,有),)()()(11122212为中间两项nnnnnnnaaaanaanaanSndSS奇偶,1nnaaSS偶奇.
4、项数为奇数12n的等差数列na,有:)()12(12为中间项nnnaanS,naSS偶奇,1nnSS偶奇.2 文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:
5、CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I
6、4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:
7、CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I
8、4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:
9、CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I
10、4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A62.等比数列的定义与性质(1)定义:1nnaqa(q 为常数,0q),通项公式:11nnaaq.(2)等比中项:xGy、成等比数列2Gxy,或 Gxy.(3)前 n项和:11(1)1(1)1nnna qSaqqq(要注意!)(4)性质:na是等比数列
11、任意两项间的关系:aman.qmn(m、nN).若 mnpq,则mnpqaaaa232nnnnnSSSSS,仍为等比数列,公比为nq.注意:由nS求na时应注意什么?1n时,11aS;2n时,1nnnaSS.3求数列通项公式的常用方法(1)求差(商)法如:数列na,12211125222nnaaan,求na解:1n时,112 152a,114a2n时,12121111215222nnaaan得:122nna,12nna,114(1)2(2)nnnan练习数列na满足111543nnnSSaa,求na注意到11nnnaSS,代入得14nnSS;又14S,nS是等比数列,4nnS2n时,113 4
12、nnnnaSS文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P
13、5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X
14、4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P
15、5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X
16、4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P5T4 HW1Q9E2I4T9 ZA5X4F7R9A6文档编码:CO8S1X5P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中数学 数列 知识点 总结 经典 推荐 文档
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内