圆锥曲线知识点总结大全.docx
《圆锥曲线知识点总结大全.docx》由会员分享,可在线阅读,更多相关《圆锥曲线知识点总结大全.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 圆锥曲线知识点总结大全 最终要学习圆锥曲线学问点了,高二数学本身的学问体系而言,它主要是对数学学问的深入学习和新学问模块的补充。圆锥曲线学问点总结有哪些你知道吗?一起来看看圆锥曲线学问点总结,欢送查阅! 圆锥曲线学问点大全 圆锥曲线的应用 【考点透视】 一、考纲指要 1.会按条件建立目标函数讨论变量的最值问题及变量的取值范围问题,留意运用数形结合、几何法求某些量的最值. 2.进一步稳固用圆锥曲线的定义和性质解决有关应用问题的方法. 二、命题落点 1.考察地理位置等特别背景下圆锥曲线方程的应用,修建大路费用问题转化为距离最值问题数学模型求解,如例1; 2.考察直线、抛物线等根本学问,考察运用解
2、析几何的方法分析问题和解决问题的力量,如例2; 3.考察双曲线的概念与方程,考察考生分析问题和解决实际问题的力量,如例3. 【典例精析】 例1:(2023福建)如图,B地在A地的正东方向4km处,C地在B地的北偏东300方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上选一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建大路的费用分别是a万元/km、2a万元/km,那么修建这两条大路的总费用最低是( ) A.(2-2)a万元 B.5a万元 C. (2+1)a万元 D.(2+3)a万元 解析:设总费用为y万元,则y=aMB+2aMC
3、河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km., 曲线PG是双曲线的一支,B为焦点,且a=1,c=2. 过M作双曲线的焦点B对应的准线l的垂线,垂足为D(如图).由双曲线的其次定义,得=e,即MB=2MD. y= a2MD+ 2aMC=2a(MD+MC)2aCE.(其中CE是点C到准线l的垂线段). CE=GB+BH=(c-)+BCcos600=(2-)+2=. y5a(万元). 答案:B. 例2:(2023北京,理17)如图,过抛物线y2=2px(p0)上肯定点P(x0,y0)(y00),作两条直线分别交抛物线于A(x1,y1),B(x2,y2). (1)求该抛物线上纵坐标
4、为的点到其焦点F的距离; (2)当PA与PB的斜率存在且倾斜角互补时, 求的值,并证明直线AB的斜率是非零常数. 解析:(1)当y=时,x=. 又抛物线y2=2px的准线方程为x=-,由抛物线定义得, 所求距离为. (2)设直线PA的斜率为kPA,直线PB的斜率为kPB. 由y12=2px1,y02=2px0,相减得:, 故.同理可得, 由PA、PB倾斜角互补知 , 即, 所以, 故. 设直线AB的斜率为kAB, 由,相减得, 所以.将代入得, 所以kAB是非零常数. 例3:(2023广东)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到
5、的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上) 解析:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020). 设P(x,y)为巨响发生点,由A、C同时听到巨响声,得|PA|=|PC|, 故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|-|PA|=3404=1360. 由双曲线定义知P点在以A、B为焦点的双曲线上, 依题意得
6、a=680,c=1020,b2=c2-a2=10202-6802=53402, 故双曲线方程为.用y=-x代入上式,得x=680, |PB|PA|,x=-680,y=680,即P(-680,680),故PO=680. 答:巨响发生在接报中心的西偏北450距中心680 m处. 【常见误区】 1.圆锥曲线实际应用问题多带有肯定的实际生活背景, 考生在数学建模及解模上均不同程度地存在着肯定的困难, 回到定义去, 将实际问题与之相互联系,敏捷转化是解决此类难题的关键; 2.圆锥曲线的定点、定量、定值等问题是隐蔽在曲线方程中的固定不变的性质, 考生往往只能浮于外表分析问题,而不能总结出其实质性的结论,致
7、使问题讨论徘徊不前,此类问题解决需留意可以从特别到一般去逐步归纳,并设法推导论证. 【根底演练】 1.(2023重庆) 若动点()在曲线上变化,则的最大值为( )A. B. C. D.2 2.(2023全国)设,则二次曲线的离心率的取值范围为( )A. B.C. D. 3.(2023精华教育三模)一个酒杯的轴截面是一条抛物线的一局部,它 的方程是x2=2y,y0,10 在杯内放入一个清洁球,要求清洁球能 擦净酒杯的最底部(如图),则清洁球的最大半径为( ) A. B.1 C. D.2 4. (2023泰州三模)在椭圆上有一点P,F1、F2是椭圆的左右焦点,F1PF2为直角三角形,则这样的点P有
8、 ( ) A.2个 B.4个 C.6个 D.8个 5.(2023湖南) 设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,.),使|FP1|,|FP2|, |FP3|,.组成公差为d的等差数列,则d的取值范围为 . 6.(2023上海) 教材中坐标平面上的直线与圆锥曲线两章内容表达出解析几何的本质是 . 7.(2023浙江)已知双曲线的中心在原点, 右顶点为A(1,0),点P、Q在双曲线的右支上, 点M(m,0)到直线AP的距离为1, (1)若直线AP的斜率为k,且|k|?, 求实数m的取值范围; (2)当m=+1时,APQ的内心恰好是点M, 求此双曲线的方程. 8. (2
9、023上海) 如图, 直线y=x与抛物 线y=x2-4交于A、B两点, 线段AB的垂直平 分线与直线y=-5交于Q点. (1)求点Q的坐标; (2)当P为抛物线上位于线段AB下方 (含A、B) 的动点时, 求OPQ面积的最大值. 9.(2023北京春) 2023年10月15日9时,神舟五号载人飞船放射升空,于9时9分50秒精确进入预定轨道,开头巡天飞行.该轨道是以地球的中心为一个焦点的椭圆.选取坐标系如下图,椭圆中心在原点.近地点A距地面200km,远地点B距地面350km.已知地球半径R=6371km. (1)求飞船飞行的椭圆轨道的方程; (2)飞船绕地球飞行了十四圈后,于16日5时59分返
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 知识点 总结 大全
限制150内