圆锥体积教学设计(3篇).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《圆锥体积教学设计(3篇).docx》由会员分享,可在线阅读,更多相关《圆锥体积教学设计(3篇).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 圆锥体积教学设计(3篇) 教学内容:小学数学人教版第12册42页43页 教学目标: 1通过动手操作试验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。 2通过学生动脑、动手,培育学生的思维力量和空间想象力量。 3、培育学生个人的自主学习力量和小组合作学习的力量。 教学重点和难点:把握圆锥体体积公式的推导。 教具预备: 1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。 2、多媒体课件设计 教学过程设计 (一)复习预备: 1怎样计算圆柱的体积?(板书:圆柱体的体积=底面积高) 2一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米? 3圆锥有什
2、么特征? 学生答复后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪耀。 (二)导入新课 今日我们就利用这些学问探讨新的问题怎样计算圆锥的体积(板书课题) (三)进展新课 1、探讨圆锥的体积公式 教师:怎样探讨圆锥的体积计算公式呢?在答复这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的: 学生答复,教师板书:圆柱(转化)长方体圆柱体积公式(推导)长方体体积公式 教师:借鉴这种方法,为了我们讨论圆锥体体积的便利,每个组都预备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么一样的地方?学生操作比拟。 (1)提问学生:你发觉到什么?(这个圆柱体和这个圆锥体的
3、外形有什么关系) (学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。(板书:等底等高) (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积高”来求圆锥体体积行不行?(不行,由于圆锥体的体积小) 教师:(把圆锥体套在透亮的圆柱体里)是啊,圆锥体的体积小,那你估量一下这两个形体的体积大小有什么样的倍数关系?(指名发言) 的水和圆柱体、圆锥体做试验。怎样做这个试验由小组同学自己商议,但最终要向同学们汇报,你们组做试验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。 (3)学生分组做试验。 A.谁来汇报一下,你们组是怎样做试验的?
4、 b.你们做试验的圆柱体和圆锥体在体积大小上发觉有什么倍数关系? (学生发言:圆柱体的体积是圆锥体体积的3倍) 同学们得出这个结论特别重要,其他组也是这样的吗? 我们学过用字母表示数,谁来把这个公式整理一下?(指名发言) (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进展体积大小的比拟,通过比拟你发觉什么? 学生答复后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)假如教师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做试验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(由于是等底等高的圆柱体和圆锥体
5、。) (教师在体积公式与“等底等高”四个字上连线。) 现在我们得到的这个结论就更完整了。(指名反复表达公式。) 今后我们求圆锥体体积就用这种方法来计算。 (三)稳固反应 1例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少? A学生完成后,进展小组沟通。 B你是怎样想的和怎样解决问题。(提问学生多人) C教师板书: 1912=76(立方厘米) 答:它的体积是76立方米 2练习题。 一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反应。) 3、出例如2:要求学生自己读题,理解题意思。 在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,
6、高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保存整千克) (1)提问:从题目中你知道什么? (2)学生独立完成后教师提问。并答复同学的质疑:3.14()1.2表示什么?为什么要先求圆锥的体积?得数保存整千克数是什么意思?. 4、比拟:例1和例2有什么地方不同? (1)直接告知了我们底面积,而(2)没有直接告知,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。 我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。 四、稳固练习: 1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨
7、? 2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。 (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是() 立方米3a立方米9立方米 (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米 (1)6立方米(2)3立方米(3)2立方米 2、学生操作: 看看我们的教室是什么体?(长方体) 要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组争论) 指名发言。当争辩不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比拟怎样放体积最大的圆锥体。 五:这节课你有什么收获? 六、作业: 书
8、本44页第3、4、5。 圆锥体积教学设计2 【教材分析】 本节课属于空间与图形学问的教学,是小学阶段几何学问的重难点局部,是小学学习立体图形体积计算的飞跃,通过这局部学问的教学,可以进展学生的空间观念、想象力量,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何学问奠定良好的根底。本节内容是在学生了解了圆锥的特征,把握了圆柱体积的计算方法根底上进展教学的,教材重视类比,转化思想的”渗透,直观引导学生经受“猜想、类比、观看、试验、探究、推理、总结”的探究过程,理解把握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮忙学生建立空间观念,还能培育学生抽象的规律思维力量,激发学生的
9、想象力. 【设计理念】 数学课程标准中指出:应放手让学生经受探究的过程,在观看、操作、推理、归纳、总结过程中把握学问、进展空间观念,从而提高学生自主解决问题的力量。 【教学目标】 1、学问与技能:把握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一学问解决生活中一些简洁的实际问题。 2、过程与方法:通过“直觉猜测试验探究合作沟通得出结论实践运用”探究过程,获得圆锥体积的推导过程和学习的方法。 3、情感、态度与价值观:培育学生勇于探究的求知精神,感受到数学来源于生活,能积极参加数学活动,自觉养成与人合作沟通与独立思索的良好习惯。 【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥 体积 教学 设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内