高中数学必修2第二章免费.pdf
《高中数学必修2第二章免费.pdf》由会员分享,可在线阅读,更多相关《高中数学必修2第二章免费.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/8 第二章 点、直线、平面之间的位置关系 一、选择题 1设,为两个不同的平面,l,m 为两条不同的直线,且 l,m,有如下的两个命题:若,则 lm;若 lm,则 那么()A是真命题,是假命题 B是假命题,是真命题 C都是真命题 D都是假命题 2如图,ABCDA1B1C1D1为正方体,下面结论错误的是()ABD平面 CB1D1 BAC1BD CAC1平面 CB1D1 D异面直线 AD 与 CB1角为 60 3关于直线 m,n 与平面,有下列四个命题:m,n 且,则 mn;m,n 且,则 mn;m,n 且,则 mn;m,n 且,则 mn 其中真命题的序号是()A B C D 4给出下列四个命题
2、:垂直于同一直线的两条直线互相平行 垂直于同一平面的两个平面互相平行 若直线 l1,l2与同一平面所成的角相等,则 l1,l2互相平行 若直线 l1,l2是异面直线,则与 l1,l2都相交的两条直线是异面直线 其中假命题的个数是()A1 B2 C3 D4 5下列命题中正确的个数是()若直线 l 上有无数个点不在平面内,则 l 若直线 l 与平面平行,则 l 与平面内的任意一条直线都平行 如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行 若直线 l 与平面平行,则 l 与平面内的任意一条直线都没有公共点 A0 个 B1 个 C2 个 D3 个 (第 2 题)2/8 6
3、两直线 l1与 l2异面,过 l1作平面与 l2平行,这样的平面()A不存在 B有唯一的一个 C有无数个 D只有两个 7把正方形 ABCD 沿对角线 AC 折起,当以 A,B,C,D 四点为顶点的三棱锥体积最大时,直线 BD 和平面 ABC 所成的角的大小为()A90 B60 C45 D30 8下列说法中不正确的是()A空间中,一组对边平行且相等的四边形一定是平行四边形 B同一平面的两条垂线一定共面 C过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内 D过一条直线有且只有一个平面与已知平面垂直 9给出以下四个命题:如果一条直线和一个平面平行,经过这条直线的一个平面和这个平
4、面相交,那么这条直线和交线平行 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 如果两条直线都平行于一个平面,那么这两条直线互相平行 如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直 其中真命题的个数是()A4 B3 C2 D1 10 异面直线 a,b 所成的角 60,直线 ac,则直线 b 与 c 所成的角的范围为()A30,90 B60,90 C30,60 D30,120 二、填空题 11已知三棱锥 PABC 的三条侧棱 PA,PB,PC 两两相互垂直,且三个侧面的面积分别为 S1,S2,S3,则这个三棱锥的体积为 12P 是 ABC 所在平面外一点,
5、过 P 作 PO平面,垂足是 O,连 PA,PB,PC (1)若 PAPBPC,则 O 为 ABC 的 心;(2)PAPB,PAPC,PCPB,则 O 是ABC 的 心;(3)若点 P 到三边 AB,BC,CA 的距离相等,则 O 是ABC 的 心;(4)若 PAPBPC,C90,则 O 是 AB 边的 点;3/8(5)若 PAPBPC,ABAC,则点 O 在ABC 的 线上 13如图,在正三角形 ABC 中,D,E,F 分别为各边的中点,G,H,I,J 分别为 AF,AD,BE,DE 的中点,将ABC 沿 DE,EF,DF 折成三棱锥以后,GH 与 IJ 所成角的度数为 14直线 l 与平面
6、 所成角为 30,lA,直线 m,则 m 与 l 所成角的取值范围是 15 棱长为 1 的正四面体内有一点 P,由点 P 向各面引垂线,垂线段长度分别为 d1,d2,d3,d4,则 d1d2d3d4的值为 16直二面角 l 的棱上有一点 A,在平面,内各有一条射线 AB,AC 与 l 成45,AB,AC,则BAC 三、解答题 17在四面体 ABCD 中,ABC 与DBC 都是边长为 4 的正三角形(1)求证:BCAD;(2)若点 D 到平面 ABC 的距离等于 3,求二面角 ABCD 的正弦值;(3)设二面角 ABCD 的大小为,猜想 为何值时,四面体 ABCD 的体积最大(不要求证明)18
7、如图,在长方体 ABCDA1B1C1D1中,AB2,BB1BC1,E 为 D1C1的中点,连结 ED,EC,EB 和 DB (1)求证:平面 EDB平面 EBC;(2)求二面角 EDBC 的正切值 J(第 13 题)(第 18 题)(第 17 题)4/8 19*如图,在底面是直角梯形的四棱锥ABCD 中,ADBC,ABC90,SA面 ABCD,SAABBC,AD21(1)求四棱锥 SABCD 的体积;(2)求面 SCD 与面 SBA 所成的二面角的正切值(提示:延长 BA,CD 相交于点 E,则直线 SE 是 所求二面角的棱.)(第 19 题)20*斜三棱柱的一个侧面的面积为 10,这个侧面与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 第二 免费
限制150内