最新八年级数学下册复习提纲.pdf
《最新八年级数学下册复习提纲.pdf》由会员分享,可在线阅读,更多相关《最新八年级数学下册复习提纲.pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级数学下册复习提纲【篇一】八年级数学下册复习提纲变量与函数一、变量与常量1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。2、注意事项:(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。二、函数概念1、定义:在某个变化过程中,如果有两个变量x 和 y,对于x 的每一个确定的值,y 都有的值与其对
2、应,那么,我们就说y是 x 的函数,其中x 叫做自变量,y 叫做因变量。2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。四、求函数自变量的取值范围1实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。2用数学式子表示的函数的自变量取值范围例 1求下列函数中自变量x 的取值范围(1)解析式为整式的,x 取全体实数;(2)解析式为分式的,分母必须不等于0 式子才有意义;(3)解析式的是二次根式的被开方数必须是非
3、负数式子才有意义;(4)解析式是三次方根的,自变量的取值范围是全体实数。3函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。函数的图象一、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中水平的数轴叫做横轴(或x 轴),取向右为正方向;竖直的数轴叫做纵轴(y 轴),取向上为正方向;两轴的交点O 叫做原点。在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。2、坐标平面内被x 轴、y 轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限注意:x 轴、y 轴原点不属于任何象限。
4、3、平面直角坐标系中的点分别向x 轴、y 轴作垂线段,在x轴上垂足所显示的数称为该点的横坐标,在 y 轴上垂足所显示的数称为该点的纵坐标。点的坐标反映的是一个点在平面内的位置。写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括号括起来。如 P(3,2)横坐标为 3,纵坐标为 2。特别注意坐标的顺序不同,表示的就是不同位置的点。所以点的坐标是一对有顺序的实数,称为有序实数对。4、平面直角坐标系中的点与有序实数对一一对应。5、坐标的特征(1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数;在第三象限内的点,横坐标是负数,纵坐标是负数;在第
5、四象限内的点,横坐标是正数,纵坐标是负数;(2)x 轴上点的纵坐标等于零;y 轴上点的横坐标等于零6、对称点的坐标特征(1)关于 x 轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;(2)关于 y 轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反。(4)第一、三象限角平分线上点:横坐标与纵坐标相同;(5)第二、四象限角平分线上点:横坐标与纵坐标互为相反数。7、点到两坐标轴的距离点 A(a,b)到 x 轴的距离为|b|,点 A(a,b)到 y 轴的距离为|a|。二、函数的图象1、意义:对于一个函数,如果
6、把自变量x 与函数值 y 的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象。2、作函数图象的方法:描点法。步骤:(1)列表;(2)描点;(3)连线。3、一般函数作图象,要求横轴和纵轴上的单位长度一定要一致,按照对应的解析式先计算出一对对应值,就是坐标,然后描点,再连线;画实际问题的图象时,必须先考虑函数自变量的取值范围有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以不一致。一次函数一、一次函数的概念之所以称为一次函数,是因为它们的关系式是用一次整式表示的。学习此概念要从两个方面来理解。(1)从其表达式上:一次函数通常是指形
7、如:y=kx+b(k、b 为常数,k0)的函数,凡是成这种形式的函数都是一次函数。而当 b=0 时,即 y=kx(k 0的常数),则称为正比例函数,其中k 为比例系数。(2)从其意义上:它们表示的是两个变量之间的关系,这种函数关系具有特定的意义,如,如果说两各变量之间具有一次函数关系,我们就可按照概念设出函数关系式,成正比例关系的也同样,如,若s与t 成正比例关系,我们便可设s=kt(k0,t 为自变量)“正比例函数”与“成正比例”的区别:正比例函数一定是y=kx 这种形式,而成正比例则意义要广泛得多,它反映了两个量之间的固定正比例关系,如a+3与 b-2 成正比例,则可表示为:a+3=k(b
8、-2)(k0)二、一次函数的图象正比例函数和一次函数的图象都是一条直线,所以对于其解析式也称为“直线 y=kx+b,直线 y=kx”。因为一次函数的图象是一条直线,所以在画一次函数的图象时,只要描出两个点,在通过两点作直线即可。1、画正比例函数y=kx(k 0 的常数)的图象时,只需要这两个特殊点:(0,0)和(1,k)两点;2、画一次函数 y=kx+b(k、b 为常数,k0)的图象时,只需要找出它与坐标轴的两个交点即可。一次函数与x 轴的交点坐标是:(0,b),与 y 轴的交点坐标是:(,0)3、若两个不同的一次函数的一次项的系数相同,则这它们的图象平行。4、将 y=kx 的图象沿着沿着轴向
9、上(b0)或向下(b5、求两一次函数的交点坐标:联立解两各函数解析式得到的二元一次方程组,求的自变量x 的值为交点的横坐标,求出的 y 的值为交点的纵坐标。三、一次函数的性质一次函数的性质是由k 来决定的。1、正比例函数y=kx(k0 的常数)的性质(1)当 k0 时,图象经过一、三象限,y 随 x 的增大而增大,这时函数图象从左到右上升。(2)当 k2、一次函数 y=kx+b(k、b 为常数,k0)的性质(1)当 k0 时,当 b0 时,图象经过一、三、二象限,y随 x 的增大而增大,这时函数图象从左到右上升。当b(2)当 k0 时,图象经过二、四、一象限,y 随 x 的增大而减小,这时函数
10、图象从左到右下降。当 b 四、确定正比例函数好一次函数的解析式1、意义:(1)确定一个正比例函数,就是要确定正比例函数y=kx(k 0的常数)中的常数 k;(2)确定一个一次函数,需要确定一次函数y=kx+b(k、b 为常数,k0)中常数 k 和 b。2、待定系数法(1)先设待求函数关系式(其中含有未知的系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。(2)用待定系数法求函数关系式的一般方法:设出含有待定系数的函数关系式;把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数方程(组);解方程(组),求出待定系数;将求得的待定系数的值代回所设的
11、关系式中,从而确定出函数关系式。五、一次函数(正比例函数)的应用。与方程的应用差不多,注意审题步骤。反比例函数一、反比例函数1、定义:形如y=(k 0 的常数)的函数叫做反比例函数。2、对于反比例函数:(1)掌握其形式 y=,且 k 为常数,同时不能为0;等号左边是函数 y,右边是一个分式,分子是一个不为0 的常数,分母是自变量 x,若把反比例函数写成y=kx-1,则 x 的系数为-1;自变量 x 的取值范围是x0 的一切实数,函数 y 的取值范围也是不为0 的一切实数;(2)将 y=转化为 xy=k,由此可得反比例函数中的两个变量的积为定值,即某两个变量的积为一定值时,则这两个变量就成反比例
12、关系。(3)“反比例函数”与“成反比例”之间的区别在于,前者是一种函数关系,而后者是一种比例关系,不一定是反比例函数,如说 s与 t2 成反比例,可设为s=(k 0 的常数),但这显然不是反比例函数。二、用待定系数法求反比例函数表达式。由于反比例函数y=中只有一个待定系数,因此只需要一组对应值,即可求k 的值,从而确定其表达式。三、反比例函数的图象1、意义:(1)名称:双曲线,它有两个分支,分别位于一、三或二、四象限;(2)这两个分支关于原点成中心对称;(3)由于反比例函数自变量x0,函数 y0,所以反比例函数的图象与 x 轴和 y 轴都没有交点,无限接近坐标轴,永远不能到达坐标轴。2、画法(
13、描点法):(1)列表。自变量的值应在0 的两边取值,各取三各以上,共六对互为相反数的数对,填y 值时,只需计算出自变量对应的函数值即可。(2)描点:先画出反比例函数一侧(即一个象限内的分支),在对称地画出另一侧(另一分值);(3)连线:按照从左到右的顺序用平滑曲线连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交。【篇二】八年级数学下册复习提纲分式及基本性质一、分式的概念1、分式的定义:如果A、B 表示两个整式,并且B 中含有字母,那么式子叫做分式。2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。其中分子是被除式,分母是除
14、式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。4、分式的值为0 的条件:当分式的分子等于0,而分母不等于0 时,分式的值为 0。即,使=0 的条件是:A=0,B0。5、有理式整式和分式统称为有理式。整式分为单项式和多项式。分类:有理式单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式
15、,分式的值不变。用式子表示为:=,其中 M(M 0)为整式。2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做
16、分式的约分。在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。三、分式的符号法则:(1)=;(2)=;(3)=分式的运算一、分式的乘除法1、法则:(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。(意思就是,分式相乘,分子与分子相乘,分母与分母相乘)。用式子表示:(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。用式子表示:2、应用法则时要注意:(1)分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 八年 级数 下册 复习 提纲
限制150内