一次函数经典例题.doc
《一次函数经典例题.doc》由会员分享,可在线阅读,更多相关《一次函数经典例题.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 【变式1】如果函数是正比例函数,那么( ).Am=2或m=0 Bm=2 Cm=0 Dm=1【答案】:考虑到x的指数为1,正比例系数k0,即|m-1|=1;m-20,求得m=0,选C【 变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2求出k,b即可解:设这个一次函数的表达式为y=kx+b由题意可知,当 x=0时,y=6
2、;当x=4时,y=7.2.把它们代入y=kx+b中得这个一次函数的表达式为y=0.3x+6【变式2】已知直线y=2x+1(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值解析:直线 y=kx+b与y=2x+l关于y轴对称,两直线上的点关于 y轴对称又直线 y2x+1与x轴、y轴的交点分别为A(-,0),B(0,1),A(-,0),B(0,1)关于y轴的对称点为A(,0),B(0,1)直线 y=kx+b必经过点A(,0),B(0,1)把 A(,0),B(0,1)代入y=kx+b中得k-2,b1所以(1)点M(0,1)(2)k=-2,b=1【变式3】判
3、断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上解:设过A,B两点的直线的表达式为y=kx+b由题意可知,过A,B两点的直线的表达式为y=x-2当 x=4时,y=4-2=2点 C(4,2)在直线y=x-2上三点 A(3,1), B(0,-2),C(4,2)在同一条直线上类型三:函数图象的应用3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,
4、根据图中提供的信息,回答下列问题:(1)汽车共行驶了_ km;(2)汽车在行驶途中停留了_ h;(3)汽车在整个行驶过程中的平均速度为_ km/h;(4)汽车自出发后3h至4.5h之间行驶的方向是_.思路点拨:读懂图象所表达的信息,弄懂并熟悉图象语言.图中给出的信息反映了行驶过程中时间和汽车位置的变化过程,横轴代表行驶时间,纵轴代表汽车的位置.图象上的最高点就是汽车离出发点最远的距离. 汽车来回一次,共行驶了1202=240(千米),整个过程用时4.5小时,平均速度为2404.5= (千米/时),行驶途中1.5时2时之间汽车没有行驶.解析:(1)240; (2)0.5; (3) ; (4)从目
5、的地返回出发点.总结升华:这类题是课本例题的变式,来源于生活,贴近实际,是中考中常见题型,应注意行驶路程与两地之间的距离之间的区别.本题图象上点的纵坐标表示的是汽车离出发地的距离,横坐标表示汽车的行驶时间.举一反三:【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。 解析:比较相同时间内,路程s的大小.在横轴的正方向上任取一点,过该点作纵轴的平行线,比较该平行线与两直线的交点的纵坐标的大小.所以.甲比乙快【变式2】(2011四川内江)小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用
6、的时间与路程的关系如图所示。放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟 B.17分钟 C.18分钟 D.20分钟【答案】:D 分析:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分。原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟。【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示: 根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 经典 例题
限制150内