《红外拉曼光谱练习题24180.pdf》由会员分享,可在线阅读,更多相关《红外拉曼光谱练习题24180.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-.z.红外、拉曼光谱习题 一选择题 1红外光谱是 AE A:分子光谱 B:原子光谱 C:吸光光谱 D:电子光谱 E:振动光谱 2当用红外光激发分子振动能级跃迁时,化学键越强,则 ACE A:吸收光子的能量越大 B:吸收光子的波长越长 C:吸收光子的频率越大 D:吸收光子的数目越多 E:吸收光子的波数越大 3在下面各种振动模式中,不产生红外吸收的是AC A:乙炔分子中对称伸缩振动 B:乙醚分子中不对称伸缩振动 C:CO2分子中对称伸缩振动 D:H2O 分子中对称伸缩振动 E:HCl 分子中 HCl键伸缩振动 4下面五种气体,不吸收红外光的是 D :OH2 :2CO :HCl :2N 5 分子不
2、具有红外活性的,必须是 D :分子的偶极矩为零 :分子没有振动 :非极性分子 :分子振动时没有偶极矩变化 :双原子分子 6预测以下各个键的振动频率所落的区域,正确的选项是 ACD :伸缩振动数在 400025001cm B:C-O 伸缩振动波数在 250015001cm C:N-H 弯曲振动波数在 400025001cm D:C-N 伸缩振动波数在 150010001cm E:CN 伸缩振动在 150010001cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是 B A:乙烷中 C-H 键,k5.1510达因1cm B:乙炔中 C-H 键,k5.9510达
3、因1cm C:乙烷中 C-C 键,k4.5510达因1cm D:CH3CN 中 CN 键,k17.5510达因1cm-.z.E:蚁醛中 C=O 键,k12.3510达因1cm 8基化合物中,当 C=O 的一端接上电负性基团则 ACE A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9以下五个化合物,羰基伸缩振动的红外吸收波数最大者是 E A:B:C:D:E:10共轭效应使双键性质按下面哪一种形式改变 ABCD :使双键电子密度下降 :双键略有伸长 :使双键的力常数变小 使振动频率减小 :使吸收光电子的波数增加 11下五个
4、化合物羰基伸缩振动的红外吸收波数最小的是 E A:B:C:D:E:12下面四个化合物中的 C=C 伸缩振动频率最小的是 D A:B:C:D:13两 个化合物(1),(2)如用红外光谱鉴别,主要依据的谱带是 C A(1)式在33001cm有吸收而(2)式没有 B:(1)式和(2)式在33001cm都有吸收,后者为双峰 C:(1)式在22001cm有吸收 D:(1)式和(2)式在22001cm都有吸收 E:(2)式在16801cm有吸收 14合物在红外光谱的 304030101cm及 168016201cm区域有吸收,则下面五个化合物最可能的是 A -.z.A:B:C:D:E:15.一种能作为色散
5、型红外光谱仪色散元件的材料为 C A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 16.预测 H2S 分子的基频峰数为 B A4 B3 C2 D1 17.CH3CH3 的哪种振动形式是非红外活性的 A AC-C BC-H CasCH DsCH 18.化合物中只有一个羰基,却在 1773cm-1 和 1736 cm-1 处出现 两个吸收峰,这是因为 C A诱导效应 B共轭效应 C费米共振 D空间位阻 19.Cl2 分子在红外光谱图上基频吸收峰的数目 A A 0 B 1 C 2 D 3 20.红外光谱法,试样状态可以 D A 气体状态 B 固体,液体状态 C 固体状态 D 气体,液体,固体状态都
6、可以 21.红外吸收光谱的产生是由 C A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 22.色散型红外分光光度计检测器多 C A 电子倍增器 B 光电倍增管 C 高真空热电偶 D 无线电线圈 23.一个含氧化合物的红外光谱图在 36003200cm-1 有吸收峰,以下化合物最可能的 C A CH3CHO B CH3CO-CH3 C CH3CHOH-CH3 D CH3O-CH2-CH3 24.*化合物在紫外光区 204nm 处有一弱吸收,在红外光谱中有如下吸收峰:3300-2500 cm-1宽峰,1710
7、 cm-1,则该化合物可能是 C -.z.A、醛 B、酮 C、羧酸 D、烯烃 二填空 1 对于同一个化学键而言,台 C-H 键,弯曲振动比伸缩振动的力常数_小_,所以前者的振动频率比后者_小_.2 C-H,C-C,C-O,C-Cl,C-Br 键的振动频率,最小的是 _ C-Br .3 C-H,和 C-O 键的伸缩振动谱带,波数最小的是 C-O _键.4 在振动过程中,键或基团的 偶极矩 _不发生变化,就不吸收红外光.5 以下三个化合物的不饱和度各为多少(1)188HC,U=_ 0_.(2)NHC74,U=2 .(3),U_ 5 _.6 C=O 和 C=C 键的伸缩振动谱带,强度大的是_C=O_
8、.7 在中红外区(40006501cm)中,人们经常把 400013501cm区域称为_ 官能团区 _,而把 13506501cm区域称为_ 指纹区 .8 氢键效应使 OH 伸缩振动频率向_低指数_波方向移动.9 羧酸在稀溶液中 C=O 吸收在17601cm,在浓溶液,纯溶液或固体时,健的力常数会 变小,使 C=O 伸缩振动移向_ 长波 _方向.10 试比拟与,在红外光谱中羰基伸缩振动的波数大的是_后者 _,原因是_ R与羰基的超共轭 _.11 试比拟与,在红外光谱中羰基伸缩振动的波数大的是_后者_,原因是_ 电负性大的原子使羰基的力常数增加 _.12 随着环力增大,使环外双键的伸缩振动频率_
9、 增加_,而使环双键的伸缩振动频率_减小_.13 根据互相排斥规则,凡具有对称中心的分子,它们的红外吸收光谱与拉曼散射光谱 没有频率一样 的谱带。14、同种分子的非极性键 S-S,C=C,N=N,CC 产生强 拉曼 谱带,随单键双键三键谱带强度 增加。15、红外 光谱中,由 C N,C=S,S-H 伸缩振动产生的谱带一般较弱或强度可变,而在 拉曼 光谱中则是强谱带。16、醇和烷烃的拉曼光谱是相似的。-.z.17、一般红外及拉曼光谱,可用以下几个规则判断(1)互相 排斥 规则2互相 允许 规则3互相 制止 规则 三问答题 1.分子的每一个振动自由度是否都能产生一个红外吸收.为什么.答:1产生条件
10、:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。2产生红外吸收的条件:1)红外辐射的能量应与振动能级差相匹配。即 vEE光;2)分子在振动过程中偶极矩的变化必须不等于零。故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。2.如何用红外光谱区别以下各对化合物.a P-CH3-Ph-COOH 和 Ph-COOCH3 b 苯酚和环己醇 答:a、在红外谱图中 P-CH3-Ph-COOH 有如下特征峰:vOH 以 3000cm-1 为中心 有一宽而散的峰。而 Ph-COOCH3 没有。b、苯酚有
11、苯环的特征峰:即苯环的骨架振动在 16251450cm-1 之间,有几个 吸收峰,而环己醇没有。3.以下振动中哪些不会产生红外吸收峰.1CO 的对称伸缩 2CH3中 CC 键的对称伸缩 3乙烯中的以下四种振动-.z.A B C D 答:10,有红外吸收峰 20,有红外吸收峰 3只有 D 无偶极矩变化,无红外吸收峰 4、以下化合物在红外光谱中哪一段有吸收.各由什么类型振动引起.HO CH=O CH3CO2CH2CCH A B 答:AHOC-H:vOH 37003200cm-1 OH 13001165cm-1 vCH(O)28202720cm-1双峰 vC=O 17401720cm-1 苯骨架振动
12、:16501450 cm-1 苯对位取代:860800 cm-1 v=CH 31003000cm-1 BCH3COCH2CCH:vC=O 17501735cm-1 vCOC 13001000cm-1 H H H H C=C H H H H C=C H+H-C=C H+H-H+H-C=C H-H+O-.z.vCC 23002100cm-1 vCH 33003200cm-1 vasCH 296210cm-1、29265cm-1 vsCH 287210cm-1、285310cm-1 asCH 145020cm-1、146520cm-1 sCH13801370cm-1 5、红外光谱图 10-28表示分
13、子式为 C8H9O2N 的一种化合物,其构造与以下构造式哪一个符合.A B C D E 答:A构造含OH,而图中无vOH峰,排除 C构造中含H2,伯酰胺,而图中无 1650、1640cm-1的肩峰,排除。D与E构造中有-COOH,而图中无 3000cm-1大坡峰,排除。B图中 3600cm-1,3300cm-1为vArN 1680cm-1,为vC=O 16001400cm-1为苯骨架振动 13001000cm-1表示有 C-O-C 所以应为B。NHCOCH3 OH NH2 CO2CH3 COCH2 OCH3 NHCH3 CO2H CH2NH2 CO2H O-.z.6、芳香化合物 C7H8O,红
14、外吸收峰为 3380、3040、2940、1460、1010、690 和 740cm-1,试推导构造并确定各峰归属。解:=7+1 8/2=4 3380cm-1说明有-OH 3040cm-1说明为不饱和 H 690 与 740cm-1说明苯单取代 得 3380cm-1为vOH;2940cm-1为 CH2的vC-H;3040cm-1为v=C-H;1460cm-1为苯骨架振动;1010cm-1,为vC-O;690 与 740cm-1为苯单取代C-H 7、化合物 C4H5N,红外吸收峰:3080,2960,2260,1647,990 和935cm-1,其中 1865 为弱带,推导构造。解:=4+1+)
15、251(=3 CH2=CHCH2CN 3080cm-1为v=C-H;2960cm-1、2260cm-1为vC-H;1647 cm-1为vCN;1418cm-1为C-H;990cm-1和 935cm-1为烯烃取代=C-H CH2OH-.z.7.一个化合物的构造不是 A 就是 B,其局部光谱图如下,试确定其构造。(A)(B)答:由图可得,在 2300cm-1左右的峰为 CN 产生的。而图在 1700cm-1 左右也没有羰基的振动峰。故可排除(B)而为(A)8.以下图是分子式为 C8H8O 化合物的红外光谱图,bp=202,试推测其构造。答:其构造为 9.请根据下面的红外光谱图试推测化合物 C7H5
16、NO3mp106的构造式。答:其构造为 10.分子式为 C8H16的未知物,其红外光谱如图,试推测构造。答:其构造为 11.红外光区的划分.答:红外光按波长不同划分为三个区域:近红外区域1-2.5 微米、中红外区域2.5-25 微米、远红外区25-1000 微米。12振动光谱有哪两种类型.多原子分子的价键或基团的振动有哪些类型.同一种基团哪种振动的频率较高.哪种振动的频率较低 答:1振动光谱有红外吸收光谱和激光拉曼光谱两种类型。2价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面弯曲振动剪式振动、面摇摆振动-.z.和面外弯曲振动扭曲振动、面外摇
17、摆振动。1伸缩振动:指键合原子沿键轴方向振动,这是键的长度因原子的伸缩运动发生变化。2弯曲振动:指原子离开键轴振动,而产生键角大小的变化。3伸缩振动频率较高,弯曲振动频率较低。键长的改变比键角的改变需要更大的能量非对称伸缩振动的频率高于对称伸缩振动。13.说明红外光谱产生的机理与条件.答:1产生机理:当用红外光波长围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,假设振动频率恰与红外光波段的*一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长围变弱,在另一些围则较强,用光波波长或波数对光的透过率作图,便可得到红外光谱 2产生条件:1辐射应具有能满足物质产
18、生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的*频率相等。2辐射与物质间有相互偶合作用,即振动中要有偶极矩变化 14红外光谱图的表示法.答:红外吸收光谱图:不同频率 IR 光辐射于物质上,导致不同透射比,以纵座标为透过率,横座标为频率,形成该物质透过率随频率的变化曲线,即红外吸收光谱图。横坐标:波数 cm-1或者波长m,纵坐标:透过率%或者吸光度。15.红外光谱图的四大特征(定性参数)是什么.如何进展基团的定性分析.如何进展物相的定性分析.-.z.答:1红外光谱图的四大特征(定性参数)是:谱带的数目、谱带的位置、谱带的强度、谱带的形状。2进展基团的定性分析时,首先,观察特征频率区,根
19、据基团的伸缩振动来判断官能团。3进展物相的定性分析:1对于物:a、观察特征频率区,判断官能团,以确定所属化合物的类型 b、观察指纹频率区,进一步确定基团的结合方式 c、对照标准谱图进展比对,假设被测物质的与物的谱图峰位置和相对强度完全一致,可确认为一种物质。2对于未知物:A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法别离 B、按照鉴定化合物的方法进展 16.何谓拉曼效应.说明拉曼光谱产生的机理与条件.答:1光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。2产生的机理:由于光
20、子与试样分子发生非弹性碰撞,使得分子的极化率发生变化,最终使散射光频率和入射光频率有差异。17.请表达 CS2的拉曼和红外活性的振动模式.答:CS2对称伸缩振动时只有拉曼活性,反对称伸缩振动和弯曲振动时只有红外活性。-.z.18比拟拉曼光谱与红外光谱。答:1一样点:两光谱都属于分子振动光谱 2不同点:1两光谱的光源不同:拉曼光谱用单色光很强的激光辐射,频率在可见光围;红外光谱用的是红外光辐射源,波长大于 1000nm 的多色光 2 产生机理不同:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,红外光谱是分子对红外光的吸收,强度由分子偶极矩决定,其适用于研究不
21、同原子的极性键的振动。3 光谱围不同:红外光谱的围是 4000-400cm-1,拉曼光谱的围是 4000-40cm-1.拉曼光谱的围较红外光谱围宽。4制样、操作的不同:a、在拉曼光谱分析中水可以作溶剂,但是红外光谱分析中水不能作为溶剂。b、拉曼光谱分析中样品可盛于玻璃瓶,毛细管等容器中直接测定,但红外光谱分析中不能用玻璃容器测定。c、拉曼光谱分析中固体样品可直接测定,但红外光谱分析中固体样品需要研磨制成 KBr 压片。19 红外与拉曼活性判断规律.指出以下分子的振动方式哪些具有红外活性、哪些具有拉曼活性。为什么.1O2、H2 2H2O 的对称伸缩振动、反对称伸缩振动和弯曲振动。答:一红外与拉曼
22、活性判断规律:产生偶极矩变化有红外活性,反之没有。分子极化率变化有拉曼活性,反之没有,凡有对称中心的分子,其分子振动仅对-.z.红外和拉曼之一有活性;凡无对称中心的分子,大多数分子振动对红外和拉曼都是有活性的;少数分子的振动即红外非活性又拉曼非活性。二 1 O2、H2都有两个原子,且为线性分子,所以其振动形式有3n-5=3*2-5=1 中,即对称伸缩振动,它们分子的振动是拉曼活性,红外非活性,因为它们是对称分子,其振动中并没有偶极矩的变化,有极化率的变化。2H2O 分子中有 3 个原子,且为非线性分子,所以其振动形式有3n-6=3*3-6=3 种,即对称伸缩振动、反对称伸缩振动和弯曲振动三种振
23、动都对红外和拉曼都具有活性,因为水分子为无对称中心的分子,其振动同时使偶极矩和极化率产生变化。20、比拟红外与拉曼光谱分析的特点。什么样的分子的振动具有红外或拉曼活性.答:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,与红外光谱分析相比,拉曼光谱的特点:1光谱围较红外光谱宽,为 40-4000cm-1;2水可以作溶剂;3)样品可盛于玻璃瓶,毛细管等容器中直接测定;4固体样品可直接测定;5激光方向性强,光束发散小1-2可测定一定深度的微区样品;如测包裹体中的物质;6)合频、倍频谐波少甚至无;图谱简单。21、何为有机基团的 IR 特征吸收峰.影响红外吸收峰发生
24、移动的因素有哪些.答:1总结大量红外光谱资料后,发现具有同一类型化学键或官能团的不同化-.z.合物,其红外吸收频率总是出现在一定的波数围,我们把这种能代表*基团,并有较高强度的吸收峰,称为该基团的特征吸收峰。2影响红外吸收峰发生移动的因素可分为两类:一是部构造因素,二是外部因素。1部因素:电子效应:A.成键轨道类型;B.诱导效应;C.诱导效应;空间效应:A.场效应;B.空间障碍;C.跨环效应;D.环力;氢键效应;互变异构;振动偶合效应;样品的物理状态的影响.2)外部因素:溶剂影响:极性基团的伸缩频率常常随溶剂的极性增大而降低;仪器的色散元件:A.棱镜:分辨率低;B:光栅:分辨率高。22、请表达
25、碳纳米管拉曼光谱中三个不同拉曼位移的物理意义。-.z.答:特征峰 1 是碳纳米管的直径,特征峰 2 是 D 带缺陷信息,特征峰 3 是切向伸缩模式电子特性。23、解释名词:1拉曼散射与瑞利散射 2Stokes 线与 anti-Stokes 线 3拉曼位移 4拉曼光谱的外表增强效应SERS 答:1单色光照射透光的样品,大局部的光被透过,小局部被散射。散射分 两类:1拉曼散射RamanScattering :光子与样品分子发生非弹性碰撞,不仅光子方向改变且有能量交换;2瑞利散射RayleighScattering :光子与样品分子发生弹性碰撞,无能量交换,仅改变方向;2STOKES 线:光子将局部能量给样品分子,散射光的能量减少,在低频处测得的散射光线;0.00.51.01.52.02.53.0Intensity(cnt/sec)5001 0001 5002 000Raman Shift(cm-1)碳纳米管研究 1 2 3-.z.ANTI-STOKES 线:光子从样品中获得能量,散射光的能量增大,在高频得测得的散射光线。(3)能量变化所引起的散射光频率变化称为拉曼位移。(4)SERS 效应是在激发区域,由于样品外表或近外表的电磁场的增强导致的拉曼散射信号极大的增强
限制150内