高中排列组合知识点汇总及典型例题18376.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中排列组合知识点汇总及典型例题18376.pdf》由会员分享,可在线阅读,更多相关《高中排列组合知识点汇总及典型例题18376.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一基本原理 1加法原理:做一件事有 n 类办法,则完成这件事的方法数等于各类方法数相加。2乘法原理:做一件事分 n 步完成,则完成这件事的方法数等于各步方法数相乘。注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。二 排 列:从n个 不 同 元 素 中,任 取m(m n)个 元 素,按 照 一 定 的 顺 序 排 成 一.mnmnA有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.!121mnnmnnnnAmn 2.规定:0!1(1)!(1)!,(1)!(1)!nnnnnn (2)!(1)1!(1)!(1)!nnnnnnnnn;(3)1 11111
2、(1)!(1)!(1)!(1)!(1)!nnnnnnnnn 三组合:从 n 个不同元素中任取 m(mn)个元素并组成一组,叫做从 n 个不同的 m 元素中任取 m 个元素的组合数,记作 Cn。1.公式:CAAn nnmmnm nmnmnmmm11!10nC规定:组合数性质:.2 nnnnnmnmnmnmnnmnCCCCCCCC21011,;11112111212211rrrrrrrrrrrrrrrrrrnnrrrnnrrnnnCCCCCCCCCCCCCCC注:若12mm1212m=mm+mnnnCC则或 四处理排列组合应用题 1.明确要完成的是一件什么事(审题)有序还是无序 分步还是分类。2解
3、排列、组合题的基本策略(1)两种思路:直接法;间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。(4)两种途径:元素分析法;位置分析法。3排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2
4、)、特殊元素优先考虑、特殊位置优先考虑;(3)相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。(5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。解法二:在总位置中选出定序
5、元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有 1 种排法;若不要求,则有 2 种排法;(6)“小团体”排列问题采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。(8)数字问题(组成无重复数字的整数)能被 2 整除的数的特征:末位数是偶数;不能被 2 整除的数的特征:末位数是奇数。能被 3 整除的数的特征:各位数字之和是 3 的倍数;能被 9 整除的数
6、的特征:各位数字之和是 9 的倍数能被 4 整除的数的特征:末两位是 4 的倍数。能被 5 整除的数的特征:末位数是 0 或 5。能被 25 整除的数的特征:末两位数是 25,50,75。能被 6 整除的数的特征:各位数字之和是 3 的倍数的偶数。4组合应用题:(1).“至少”“至多”问题用间接排除法或分类法:(2)“含”与“不含”用间接排除法或分类法:3分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。非均匀分组:分步取,得组合数相乘。即组合处理。混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。4分配问题:定额分配:(指定到具体位置)即固定位置固定人数,分步
7、取,得组合数相乘。随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。5隔板法:不可分辨的球即相同元素分组问题 例 1.电视台连续播放 6 个广告,其中含 4 个不同的商业广告和 2 个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A22种;中间 4 个为不同的商业广告有 A44种,从而应当填 A22A4448.从而应填 48 例 3.6 人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即655465547202 120245
8、04AAAA 解二:(1)分类求解:按甲排与不排在最右端分类.(1)甲排在最右端时,有55A种排法;(2)甲不排在最右端(甲不排在最左端)时,则甲有14A种排法,乙有14A种排法,其他人有44A种排法,共有14A14A44A种排法,分类相加得共有55A+14A14A44A=504 种排法 例.有 4 个男生,3 个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?分析一:先在 7 个位置上任取 4 个位置排男生,有 A47种排法.剩余的 3 个位置排女生,因要求“从矮到高”,只有 1 种排法,故共有 A471=840种.1.从 4 台甲型和 5 台乙型电视机中
9、任取 3 台,其中至少要甲型和乙型电视机各一台,则不同的取法共有 解析 1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有33394570CCC种,选.C 解析 2:至少要甲型和乙 型电视机各一台可分两种情况:甲型 1 台乙型 2 台;甲型 2 台乙型 1 台;故不同的取法有2112545470C CC C台,选C.2从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛(1)如果 4 人中男生和女生各选 2 人,有 种选法;(2)如果男生中的甲与女生中的乙必须在内,有 种选法;(3)如果男生中的甲与女生中的乙至少要有1 人在内,有 种选法;(4)如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 排列组合 知识点 汇总 典型 例题 18376
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内