2021年高考全国甲卷数学(文)试题含答案解析.doc
《2021年高考全国甲卷数学(文)试题含答案解析.doc》由会员分享,可在线阅读,更多相关《2021年高考全国甲卷数学(文)试题含答案解析.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密启用前2021年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
2、根据此频率分布直方图,下面结论中不正确的是( )A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3. 已知,则( )A. B. C. D. 4. 下列函数中是增函数的为( )A. B. C. D. 5. 点到双曲线一条渐近线的距离为( )A. B. C. D. 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据
3、V的满足已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()A. 1.5B. 1.2C. 0.8D. 0.67. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A. B. C. D. 8. 在中,已知,则( )A. 1B. C. D. 39. 记为等比数列前n项和.若,则( )A. 7B. 8C. 9D. 1010. 将3个1和2个0随机排成一行,则2个0不相邻的概率为( )A. 0.3B. 0.5C. 0.6D. 0.811. 若,则( )A. B. C. D. 12. 设是
4、定义域为R的奇函数,且.若,则( )A. B. C. D. 二填空题:本题共4小题,每小题5分,共20分.13. 若向量满足,则_.14. 已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为_.15. 已知函数的部分图像如图所示,则_.16. 已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为_三解答题:共70分.解答应写出交字说明证明过程程或演算步骤,第1721题为必考题,每个试题考生都必须作答.第2223题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别
5、用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:0.0500.0100.001k3.8416.63510.82818. 记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.19. 已知直三棱柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.20. 设函数,其中.(1)讨论的单调性;(2)若的图象与轴没有公共点,求a的取值
6、范围.21. 抛物线C的顶点为坐标原点O焦点在x轴上,直线l:交C于P,Q两点,且已知点,且与l相切(1)求C,方程;(2)设是C上的三个点,直线,均与相切判断直线与的位置关系,并说明理由(二)选考题:共10分.请考生在第2223题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为,M为C上的动点,点P满足,写出的轨迹的参数方程,并判断C与是否有公共点选修4-5:不等式选讲23. 已知函数(1)画出和的图像;(2)
7、若,求a的取值范围绝密启用前2021年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑.如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 【答案】B【解析】【分析】求出集合后可求.【详解】,故,故选:B.2. 为了解某地农村经济情况,对该
8、地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( )A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直
9、方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的
10、平均值的估计值.注意各组的频率等于.3. 已知,则( )A. B. C. D. 【答案】B【解析】【分析】由已知得,根据复数除法运算法则,即可求解.【详解】,.故选:B.4. 下列函数中是增函数的为( )A. B. C. D. 【答案】D【解析】【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.5. 点到双曲线的一条渐近线的距离为( )A. B. C. D. 【答案】A【解析】【分析】首先确定渐近线方程,然后利用点到直线距离公式求得点
11、到一条渐近线的距离即可.【详解】由题意可知,双曲线的渐近线方程为:,即,结合对称性,不妨考虑点到直线距离:.故选:A.6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()A. 1.5B. 1.2C. 0.8D. 0.6【答案】C【解析】【分析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,则.故选:C.7. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G该正方体截去三棱锥后,所得多面体的三视图中
12、,正视图如图所示,则相应的侧视图是( )A. B. C. D. 【答案】D【解析】【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D8. 在中,已知,则( )A. 1B. C. D. 3【答案】D【解析】【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 全国 数学 试题 答案 解析
限制150内