《2019年浙江省绍兴市中考数学试卷.docx》由会员分享,可在线阅读,更多相关《2019年浙江省绍兴市中考数学试卷.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、更多资料见微信公众号:数学第六感;微信号:ABC-shuxue;QQ群:3919792522019年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1(4分)5的绝对值是()A5B5C15D-152(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A12.6107B1.26108C1.26109D0.12610103(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()ABCD4(4分)为了解某地区九年级男生的身高情况
2、,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x160160x170170x180x180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A0.85B0.57C0.42D0.155(4分)如图,墙上钉着三根木条a,b,C,量得170,2100,那么木条a,b所在直线所夹的锐角是()A5B10C30D706(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A1B0C3D47(4分)在平面直角坐标系中,抛物线y(x+5)(x3)经变换后得到抛物线y(x+3)(x5),则这个变换可以是(
3、)A向左平移2个单位B向右平移2个单位C向左平移8个单位D向右平移8个单位8(4分)如图,ABC内接于O,B65,C70若BC22,则BC的长为()AB2C2D229(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D在点E从点A移动到点B的过程中,矩形ECFG的面积()A先变大后变小B先变小后变大C一直变大D保持不变10(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A245B325C123417D203417二、填空题(本大
4、题有6小题,每小题5分,共30分)11(5分)因式分解:x21 12(5分)不等式3x24的解为 13(5分)我国的洛书中记载着世界上最古老的一个幻方:将19这九个数字填入33的方格内,使三行、三列、两对角线上的三个数之和都相等如图的幻方中,字母m所表示的数是 14(5分)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则ADE的度数为 15(5分)如图,矩形ABCD的顶点A,C都在曲线y=kx(常数是0,x0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是 16
5、(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是 三、解答题(本大题共8小题,第1720小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分解答需写出必要的文字说明、演算步骤或证明过程)17(8分)(1)计算:4sin60+(2)0(-12)2-12(2)x为何值时,两个代数式x2+1,4x+1的值相等?18(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x
6、(千米)的函数图象(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程当0x150时,求1千瓦时的电量汽车能行驶的路程(2)当150x200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量19(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法20(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为
7、20cm的连杆BC,CD与AB始终在同一平面上(1)转动连杆BC,CD,使BCD成平角,ABC150,如图2,求连杆端点D离桌面l的高度DE(2)将(1)中的连杆CD再绕点C逆时针旋转,使BCD165,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:21.41,31.73)21(10分)在屏幕上有如下内容:如图,ABC内接于O,直径AB的长为2,过点C的切线交AB的延长线于点D张老师要求添加条件后,编制一道题目,并解答(1)在屏幕内容中添加条件D30,求AD的长请你解答(2)以下是小明、小聪的对话:小明:我加的条件是BD1,就可以求出AD的
8、长小聪:你这样太简单了,我加的是A30,连结OC,就可以证明ACB与DCO全等参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答22(12分)有一块形状如图的五边形余料ABCDE,ABAE6,BC5,AB90,C135,E90,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由23(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD
9、可绕点A旋转,摆动臂DM可绕点D旋转,AD30,DM10(1)在旋转过程中,当A,D,M三点在同一直线上时,求AM的长当A,D,M三点为同一直角三角形的顶点时,求AM的长(2)若摆动臂AD顺时针旋转90,点D的位置由ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时AD2C135,CD260,求BD2的长24(14分)如图,矩形ABCD中,ABa,BCb,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记kMN:EF(1)若a:b的值为1,当MNEF时,求k的值(2)若a:b的值为12,求k的最大值和最小值(3)若k的值为3,当点N是矩形的顶点,MP
10、E60,MPEF3PE时,求a:b的值2019年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1(4分)5的绝对值是()A5B5C15D-15【解答】解:根据负数的绝对值等于它的相反数,得|5|5故选:A2(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A12.6107B1.26108C1.26109D0.1261010【解答】解:数字126000000科学记数法可表示为1.26108元故选:B3(4分)
11、如图的几何体由六个相同的小正方体搭成,它的主视图是()ABCD【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A4(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x160160x170170x180x180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A0.85B0.57C0.42D0.15【解答】解:样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15故
12、选:D5(4分)如图,墙上钉着三根木条a,b,C,量得170,2100,那么木条a,b所在直线所夹的锐角是()A5B10C30D70【解答】解:32100,木条a,b所在直线所夹的锐角1801007010,故选:B6(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A1B0C3D4【解答】解:设经过(1,4),(2,7)两点的直线解析式为ykx+b,4=k+b7=2k+bk=3b=1,y3x+1,将点(a,10)代入解析式,则a3;故选:C7(4分)在平面直角坐标系中,抛物线y(x+5)(x3)经变换后得到抛物线y(x+3)(x5),则这个变换可以是()A向左平移
13、2个单位B向右平移2个单位C向左平移8个单位D向右平移8个单位【解答】解:y(x+5)(x3)(x+1)216,顶点坐标是(1,16)y(x+3)(x5)(x1)216,顶点坐标是(1,16)所以将抛物线y(x+5)(x3)向右平移2个单位长度得到抛物线y(x+3)(x5),故选:B8(4分)如图,ABC内接于O,B65,C70若BC22,则BC的长为()AB2C2D22【解答】解:连接OB,OCA180ABCACB180657045,BOC90,BC22,OBOC2,BC的长为902180=,故选:A9(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D在点E
14、从点A移动到点B的过程中,矩形ECFG的面积()A先变大后变小B先变小后变大C一直变大D保持不变【解答】解:连接DE,SCDE=12S四边形CEGF,SCDE=12S正方形ABCD,矩形ECFG与正方形ABCD的面积相等故选:D10(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A245B325C123417D203417【解答】解:过点C作CFBG于F,如图所示:设DEx,则AD8x,根据题意得:12(8x+8)33336,解得:x4,DE4,E90,由勾股
15、定理得:CD=DE2+CE242+32=5,BCEDCF90,DCEBCF,DECBFC90,CDEBCF,CECF=CDCB,即3CF=58,CF=245故选:A二、填空题(本大题有6小题,每小题5分,共30分)11(5分)因式分解:x21(x+1)(x1)【解答】解:原式(x+1)(x1)故答案为:(x+1)(x1)12(5分)不等式3x24的解为x2【解答】解:移项得,3x4+2,合并同类项得,3x6,把x的系数化为1得,x2故答案为:x213(5分)我国的洛书中记载着世界上最古老的一个幻方:将19这九个数字填入33的方格内,使三行、三列、两对角线上的三个数之和都相等如图的幻方中,字母m
16、所表示的数是4【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,第一列第三个数为:15258,m15834故答案为:414(5分)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则ADE的度数为15或45【解答】解:四边形ABCD是正方形,ADAE,DAE90,BAM180903060,ADAB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,ADE45,当点E与正方形ABCD的直线AP的两侧
17、时,由题意得,EAEM,AEM为等边三角形,EAM60,DAE36012090150,ADAE,ADE15,故答案为:15或4515(5分)如图,矩形ABCD的顶点A,C都在曲线y=kx(常数是0,x0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是y=35x【解答】解:D(5,3),A(k3,3),C(5,k5),B(k3,k5),设直线BD的解析式为ymx+n,把D(5,3),B(k3,k5)代入得5m+n=3k3m+n=k5,解得m=35n=0,直线BD的解析式为y=35x故答案为y=35x16(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E
18、,F分别为AB,AD的中点用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+22或10或8+22【解答】解:如图所示:图1的周长为1+2+3+22=6+22;图2的周长为1+4+1+410;图3的周长为3+5+2+2=8+22故四边形MNPQ的周长是6+22或10或8+22故答案为:6+22或10或8+22三、解答题(本大题共8小题,第1720小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分解答需写出必要的文字说明、演算步骤或证明过程)17(8分)(1)计算:4sin60+(2)0(-12)2-1
19、2(2)x为何值时,两个代数式x2+1,4x+1的值相等?【解答】解:(1)原式432+1423=-3;(2)x2+14x+1,x24x0,x(x4)0,x10,x2418(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程当0x150时,求1千瓦时的电量汽车能行驶的路程(2)当150x200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米1千瓦时的电量汽车能行驶的路
20、程为:15060-35=6千米;(2)设ykx+b(k0),把点(150,35),(200,10)代入,得150k+b=35200k+b=10,k=-0.5b=110,y0.5x+110,当x180时,y0.5180+11020,答:当150x200时,函数表达式为y0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时19(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间
21、和测试成绩这两方面,说说你的想法【解答】解:(1)这5期的集训共有:5+7+10+14+2056(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)511.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天20(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上(1)转动连杆BC
22、,CD,使BCD成平角,ABC150,如图2,求连杆端点D离桌面l的高度DE(2)将(1)中的连杆CD再绕点C逆时针旋转,使BCD165,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:21.41,31.73)【解答】解:(1)如图2中,作BODE于OOEABOEBAE90,四边形ABOE是矩形,OBA90,DBO1509060,ODBDsin60203(cm),DFOD+OEOD+AB203+539.6(cm)(2)作DFl于F,CPDF于P,BGDF于G,CHBG于H则四边形PCHG是矩形,CBH60,CHB90,BCH30,BCD16
23、5,DCP45,CHBCsin60103(cm),DPCDsin45102(cm),DFDP+PG+GFDP+CH+AB(102+103+5)(cm),下降高度:DEDF203+5102-103-5103-102=3.2(cm)21(10分)在屏幕上有如下内容:如图,ABC内接于O,直径AB的长为2,过点C的切线交AB的延长线于点D张老师要求添加条件后,编制一道题目,并解答(1)在屏幕内容中添加条件D30,求AD的长请你解答(2)以下是小明、小聪的对话:小明:我加的条件是BD1,就可以求出AD的长小聪:你这样太简单了,我加的是A30,连结OC,就可以证明ACB与DCO全等参考此对话,在屏幕内容
24、中添加条件,编制一道题目(可以添线添字母),并解答【解答】解:(1)连接OC,如图,CD为切线,OCCD,OCD90,D30,OD2OC2,ADAO+OD1+23;(2)添加DCB30,求AC的长,解:AB为直径,ACB90,ACO+OCB90,OCB+DCB90,ACODCB,ACOA,ADCB30,在RtACB中,BC=12AB1,AC=3BC=322(12分)有一块形状如图的五边形余料ABCDE,ABAE6,BC5,AB90,C135,E90,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积(2)
25、能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由【解答】解:(1)若所截矩形材料的一条边是BC,如图1所示:过点C作CFAE于F,S1ABBC6530;若所截矩形材料的一条边是AE,如图2所示:过点E作EFAB交CD于F,FGAB于G,过点C作CHFG于H,则四边形AEFG为矩形,四边形BCHG为矩形,C135,FCH45,CHF为等腰直角三角形,AEFG6,HGBC5,BGCHFH,BGCHFHFGHG651,AGABBG615,S2AEAG6530;(2)能;理由如下:在CD上取点F,过点F作FMAB于M,FNAE于N,过点C作CGFM于G,则
26、四边形ANFM为矩形,四边形BCGM为矩形,C135,FCG45,CGF为等腰直角三角形,MGBC5,BMCG,FGDG,设AMx,则BM6x,FMGM+FGGM+CGBC+BM11x,SAMFMx(11x)x2+11x(x5.5)2+30.25,当x5.5时,S的最大值为30.2523(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD30,DM10(1)在旋转过程中,当A,D,M三点在同一直线上时,求AM的长当A,D,M三点为同一直角三角形的顶点时,求AM的长(2)若摆动臂AD顺时针旋转90,点
27、D的位置由ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时AD2C135,CD260,求BD2的长【解答】解:(1)AMAD+DM40,或AMADDM20显然MAD不能为直角当AMD为直角时,AM2AD2DM2302102800,AM202或(202舍弃)当ADM90时,AM2AD2+DM2302+1021000,AM1010或(1010舍弃)综上所述,满足条件的AM的值为202或1010(2)如图2中,连接CD由题意:D1AD290,AD1AD230,AD2D145,D1D2302,AD2C135,CD2D190,CD1=CD22+D1D22=306,BACA1AD290,BA
28、CCAD2D2AD1CAD2,BAD1CAD2,ABAC,AD2AD1,BAD2CAD1(SAS),BD2CD130624(14分)如图,矩形ABCD中,ABa,BCb,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记kMN:EF(1)若a:b的值为1,当MNEF时,求k的值(2)若a:b的值为12,求k的最大值和最小值(3)若k的值为3,当点N是矩形的顶点,MPE60,MPEF3PE时,求a:b的值【解答】解:(1)如图1中,作EHBC于H,MQCD于Q,设EF交MN于点O四边形ABCD是正方形,FHAB,MQBC,ABCB,FHMQ,EFMN,EON90,
29、ECN90,MNQ+CEO180,FEH+CEO180FEHMNQ,EHFMQN90,FHEMQN(ASA),MNEF,kMN:EF1(2)a:b1:2,b2a,由题意:2aMN5a,aEF5a,当MN的长取最大时,EF取最短,此时k的值最大最大值=5,当MN的最短时,EF的值取最大,此时k的值最小,最小值为255(3)连接FN,MEk3,MPEF3PE,MNPM=EFPE=3,PNPM=PFPE=2,FPNEPM,PNFPME,NFME=PNPM=2,MENF,设PE2m,则PF4m,MP6m,NP12m,如图2中,当点N与点D重合时,点M恰好与B重合作FHBD于HMPEFPH60,PH2m,FH23m,DH10m,ab=ABAD=FHHD=35如图3中,当点N与C重合,作EHMN于H则PHm,HE=3m,HCPH+PC13m,tanHCE=MBBC=HEHC=313,MEFC,MEBFCBCFD,BD,MEBCFD,CDMB=FCME=2,ab=CDBD=2MBBC=2313,综上所述,a:b的值为35或2313声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/6/30 9:58:06;用户:中考培优辅导;邮箱:p5193;学号:27411521更多资料见微信公众号:数学第六感;微信号:ABC-shuxue;QQ群:391979252
限制150内