找等量关系方法汇总14121.pdf
《找等量关系方法汇总14121.pdf》由会员分享,可在线阅读,更多相关《找等量关系方法汇总14121.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 找等量关系方法汇总 LELE was finally revised on the morning of December 16,2020 找等量关系式的四种方法、根据题目中的关键句找等量关系。应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的倍多人”、“桃树和杏树一共有棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。、用常见数量关系式作等量关系。我们已学过了如“工效工时工作总量”、“速度时间路程”、“单价数量总价”、“单产量数量总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。、把公式作为等量关系。在解答一些几何形体的应用
2、题时,我们可以把有关的公式作为等量关系。、画出线段图找等量关系 对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。例如:东乡农场计划耕 6420 公顷耕地,已经耕了天,平均每天耕 780 公顷,剩下的要天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数剩下的公顷数6420”列出方程:设:平均每天要耕公顷 7806420 想一想:根据上面的线段图还可以找出哪些等量关系。1牢记计算公式,根据公式来找等量关系。这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。2
3、熟记数量关系,根据数量关系找等量关系。这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率工作时间=工作总量;速度时间=路程;单价件数=总价”等关系式。如“汽车平均每小时行 45 千米,从甲地到乙地共 225 千米,汽车共需行多少小时”就可以根据“速度时间=路程”这一数量关系,列出方程 45X=225。3抓住关键字词,根据字词的提示找等量关系。这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比多(少)”、“是的几倍”、“比的几倍多(少)”等。在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出
4、方程。如“四年级有学生 250 人,比三年级的 2 倍少 70 人,三年级有学生多少人”,根据题中“比少”可知:三年级的 2 倍减去 70 人等于四年级的人数,从而列出方程 2X70=250。4找准单位“1”,根据“量率对应”找等量关系。这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题。对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。在倍比关系的应用题中,也应找准标准量。因此,正确地确定“量率对应”是解题的关键。5补充缺省条件,根据句子意思找等量关系。这类应用题的特征是含有“比多(少)”、“比增加(减少)”等特定词,如:甲比乙多“几分之几”、少
5、“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难。因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整。如“小明第一天看书 60 页,比第二天少看,第二天看了多少页”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的 是指第二天的”,于是可列方程 X X=60。6利用好线段图,根据线段图找等量关系。有些应用题光从字面上来看,不容易理解,有时教师可辅以线段图帮助学生理解。当然,如果学生会画线段图,题目往往很容易解开。画线段图的关键仍是找准谁是单位“1”,其它量
6、都是与单位“1”相比较而言的。而理解单位“1”,又往往可以从“比”、“是”等词语后面找到,也即“比”、“是”后面的量通常是标准量,是单位“1”。以上所举只是一些比较简单的应用题,如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等,这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答。当然,这里更离不开教师平时的引导与启迪。方程(组)是解决实际问题的一个有效数学模型.列方程(组)的关键是挖掘出隐含在题目中的等量关系.寻找等量关系有三种常用方法:译式法、列表法和图示法.解题时有意识的学习使用这些方法,可以有效的帮助我
7、们分解难点,寻找出等量关系,进而列出方程(组)求解.一、译式法 例 1 4 辆小卡车和 5 辆大卡车共 27 吨;6 辆小卡车和 10 辆大卡车共运货 51吨.问小卡车和大卡车每辆每次各运多少吨?分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运 x、y 吨.则“4 辆小卡车和 5 辆大卡车共27 吨”可翻译成数学式子:2754 yx;“6 辆小卡车和 10 辆大卡车共运货 51吨”可翻译成数学式子:51106yx.由这两个式子组合列出二元一次方程组即可求解.评注:对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,
8、要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程(组)也就列出来了.这种将关键词语译成代数式列方程(组)解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.二、列表法 例 3 某日小伟和爸爸在超市买 12 袋牛奶 24 个面包花了 64 元.第二天他们又去超市时,发现牛奶和面包均打八折,这次他们花了 60 元却比上次多买了 4 袋奶 3个面包.求打折前牛奶和面包的单价?分析:设打折前牛奶的单价为 x 元,面包的单价为 y 元.可列表如下 打折前 打折后 单价(元)数量(袋或个)费用(元)单价(元)数量(袋或个
9、)费用(元)牛奶 x 12 12x 16 16 面包 y 24 24y 27 27 并根据上表可得方程组608.0278.016642412yxyx 解:略.评注:列表法是指将题目中数量及其关系填在表格内,再据此逐层分析,找到各量之间的内在相等关系,列出方程(组)的方法.列表时分类整理排列,条理清晰,优点明显.尤其对于题目较为复杂,等量关系较为隐蔽的题目效果较好.三、图示法 例 4 甲、乙两人都以不变的速度在环形路上跑步.相向而行,每隔 2 分二人相遇一次;同向而行,每隔 6 分相遇一次,已知甲比乙跑得快,求甲乙每分各跑多少圈?分析:根据题意可以分别画出甲、乙相向而行、同向而行时的示意图(如图
10、 1 和图 2)如果设甲每分钟跑 x 圈,乙每分钟跑 y 圈,根据图 1 可得12x2y;根据图 2 可得166 yx.评注:图示法是指将条件及它们之间的内在联系用简单明了的示意图表示出来,然后据图找等量关系列方程(组)的方法.图示法直观、明了,是解决行程等问题的常用方法.评注:对于较为复杂的题目,可把三种方法结合使用.这三种方法在突破等量关系这一难点问题上,体现的是分步、分层、分散的转化思想,不论容易题、难题,都非常适用.同学们开始接触这些方法时可能觉得有些繁琐,如果有意识加强这方面的训练,形成习惯,自然会省时省力,这类问题也就会迎刃而解了.1.把日常的语言翻译成代数的语言,而代数的语言就是
11、方程,即可得等量关系式。例如,商店原来有一些饺子粉,每袋5 千克,卖出 7 袋以后,还剩 40 千克。这个商店原来有多少千克饺子粉?乙 乙 甲 图 1 图 2 甲 2x 2y 6x 6y 相向 同向 日常语言:原有的重量减去每袋的重量乘以卖出的袋数等于剩下的重量。代数的语言:-57=40(这里的表示原有的重量)。又如,望岳小学买来 2 个足球和 25 根跳绳,共用元。每个足球的售价元,每根跳绳的售价是多少元?日常语言:买 2 个足球的钱加上买 25 根跳绳的钱等于共用去的钱 代数语言:2+25=(这里表示每根跳绳的售价)。2.掌握常见的基本数量关系,建立等量关系式。根据“行程问题”基本数量关系
12、式:速度时间=路程 根据“工作问题”基本数量关系式:工作效率工作时间=工作总量 3.根据题中关键性词语来理解数量关系从中得到等量关系式。例如,一个花坛里有 3 行芍药花,每行 5 棵。另一个花坛里有 3 行牡丹花,芍药花比牡丹花少 9棵,牡丹花每行多少棵?根据题中“芍药花比牡丹花少 9 棵”的关键性词语“比”、“少”,就可以列出:3-53=9(表示每行牡丹花的棵数)4.利用线段图的直观性,从图中发现等量关系。例如,某农具厂计划生产新式农具 144 件,现在已经生产了 19 件,其余的要在 4 天内完成,平均每天应当生产多少件?19 件 144 件 从图中很容易看出:19+4=144。5.根据一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等量 关系 方法 汇总 14121
限制150内