高等数学上册第六版课后习题详细图文答案第四章23377.pdf
《高等数学上册第六版课后习题详细图文答案第四章23377.pdf》由会员分享,可在线阅读,更多相关《高等数学上册第六版课后习题详细图文答案第四章23377.pdf(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学上册第六版课后习题详细答案第四章 习题 41 1.求下列不定积分:(1)dxx21;解 CxCxdxxdxx112111222.(2)dxxx;解 CxxCxdxxdxxx212323521231.(3)dxx1;解 CxCxdxxdxx21211112121.(4)dxxx32;解 CxxCxdxxdxxx3313737321031371.(5)dxxx21;解 CxxCxdxxdxxx12312511125252.(6)dxxmn;解 CxmnmCxmndxxdxxmnmmnmnmn111.(7)dxx35;解 Cxdxxdxx4334555.(8)dxxx)23(2;解 Cxxx
2、dxdxxdxxdxxx2233123)23(2322.(9)ghdh2(g 是常数);解 CghChgdhhgghdh22212122121.(10)dxx2)2(;解 Cxxxdxdxxdxxdxxxdxx423144)44()2(23222.(11)dxx22)1(;解 Cxxxdxdxxdxxdxxxdxx3524242232512)12()1(.(12)dxxx)1)(1(3;解 dxdxxdxxdxxdxxxxdxxx23212323)1()1)(1(Cxxxx25233523231.(13)dxxx2)1(;解 Cxxxdxxxxdxxxxdxxx2523212321212252
3、342)2(21)1(.(14)dxxxx1133224;解 Cxxdxxxdxxxxarctan)113(1133322224.(15)dxxx221;解 Cxxdxxdxxxdxxxarctan)111(111122222.(16)dxxex)32(;解 Cxedxxdxedxxexxx|ln32132)32(.(17)dxxx)1213(22;解 Cxxdxxdxxdxxxarcsin2arctan3112113)1213(2222.(18)dxxeexx)1(;解 Cxedxxedxxeexxxx21212)()1(.(19)dxexx3;解 CeCeedxedxexxxxxx13ln
4、3)3ln()3()3(3.(20)dxxxx32532;解 CxCxdxdxxxxxxx)32(3ln2ln5232ln)32(52)32(5232532.(21)dxxxx)tan(secsec;解 Cxxdxxxxdxxxxsectan)tansec(sec)tan(secsec2.(22)dxx2cos2;解 Cxxdxxdxxdxx)sin(21)cos1(212cos12cos2.(23)dxx2cos11;解 Cxdxxdxxtan21cos212cos112.(24)dxxxxsincos2cos;解 Cxxdxxxdxxxxxdxxxxcossin)sin(cossincos
5、sincossincos2cos22.(25)dxxxx22sincos2cos;解 Cxxdxxxdxxxxxdxxxxtancot)cos1sin1(sincossincossincos2cos22222222.(26)dxxxx)11(2;解 dxxxx211Cxxdxxx41474543474)(.2.一曲线通过点(e2,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程.解 设该曲线的方程为 yf(x),则由题意得 xxfy1)(,所以 Cxdxxy|ln1.又因为曲线通过点(e2,3),所以有321 3f(e 2)ln|e 2|C2C,C321.于是所求曲线的方程为
6、 yln|x|1.3.一物体由静止开始运动,经 t 秒后的速度是 3t2(m/s),问 (1)在 3 秒后物体离开出发点的距离是多少?(2)物体走完 360m 需要多少时间?解 设位移函数为 ss(t),则 sv3 t2,Ctdtts323.因为当 t0 时,s0,所以 C0.因此位移函数为 st 3.(1)在 3 秒后物体离开出发点的距离是 ss(3)3327.(2)由 t 3360,得物体走完 360m 所需的时间11.73603ts.4.证明函数xe221,exshx 和 exchx 都是xxexshch 的原函数.证明 xxxxxxxxxeeeeeeeexxe222shch.因为xxe
7、e22)21(,所以xe221是xxexshch 的原函数.因为 (exshx)exshxexchxex(shxchx)xxxxxxeeeeee2)22(,所以exshx 是xxexshch 的原函数.因为 (exchx)exchxexshxex(chxshx)xxxxxxeeeeee2)22(,所以exchx 是xxexshch 的原函数.习题 42 1.在下列各式等号右端的空白处填入适当的系数 使等式成立(例如)74(41xddx:(1)dxd(ax);解 dxa1 d(ax).(2)dx d(7x3);解 dx 71 d(7x3).(3)xdx d(x2);解 xdx 21 d(x2).
8、(4)xdx d(5x2);解 xdx 101 d(5x2).(5)1(2xdxdx;解)1(21 2xdxdx.(6)x3dx d(3x42);解 x3dx 121 d(3x42).(7)e 2x dx d(e2x);解 e 2x dx 21 d(e2x).(8)1(22xxeddxe;解)1(2 22xxeddxe.(9)23(cos 23sinxdxdx;解)23(cos 32 23sinxdxdx.(10)|)|ln5(xdxdx;解|)|ln5(51 xdxdx.(11)|)|ln53(xdxdx;解|)|ln53(51 xdxdx.(12)3(arctan 912xdxdx;解)3
9、(arctan 31 912xdxdx.(13)arctan1(12xdxdx;解)arctan1()1(12xdxdx.(14)1(122xdxxdx.解)1()1(122xdxxdx.2.求下列不定积分(其中 a,b,均为常数):(1)dtet 5;解 Cexdedtexxt55551551.(2)dxx3)23(;解 Cxxdxdxx433)23(81)23()23(21)23(.(3)dxx211;解 Cxxdxdxx|21|ln21)21(21121211.(4)332xdx;解 CxCxxdxxdx3232313)32(21)32(2331)32()32(3132.(5)dxeax
10、bx)(sin;解 Cbeaxabxdebaxdaxadxeaxbxbxbxcos1)()(sin1)(sin.(6)dtttsin;解 Cttdtdtttcos2sin2sin.(7)xdxx210sectan;解 xdxx210sectanCxxxd1110tan111tantan.(8)xxxdxlnlnln;解 Cxxdxxdxxxxxdx|lnln|lnlnlnlnln1lnlnlnln1lnlnln.(9)dxxxx2211tan;解 dxxxx2211tan2222211cos1sin11tanxdxxxdx Cxxdx|1cos|ln1cos1cos1222.(10)xxdxc
11、ossin;解 Cxxdxdxxxxxdx|tan|lntantan1tanseccossin2.(11)dxeexx1;解 dxeexx1Cedeedxeexxxxxarctan11122.(12)dxxex2;解.21)(212222Cexdedxxexxx (13)dxxx)cos(2;解 Cxxdxdxxx)sin(21)()cos(21)cos(2222.(14)dxxx232;解 CxCxxdxdxxx2212221223231)32(31)32()32(6132.(15)dxxx4313;解 Cxxdxdxxx|1|ln43)1(11431344443.(16)dttt)sin(
12、cos2;解 Cttdtdttt)(cos31)cos()(cos1)sin()(cos322.(17)dxxx3cossin;解 CxCxxxddxxx2233sec21cos21coscoscossin.(18)dxxxxx3cossincossin;解)sincos(cossin1cossincossin33xxdxxdxxxxx Cxxxxdxx3231)cos(sin23)cos(sin)cos(sin.(19)dxxx2491;解 dxxxdxxdxxx22249491491 )49(49181)32()32(1121222xdxxdxCxx2494132arcsin21.(20)
13、dxxx239;解 Cxxxdxxdxxdxxx)9ln(921)()991(21)(9219222222223.(21)dxx1212;解 dxxxdxxxdxx)121121(21)12)(12(11212 )12(121221)12(121221xdxxdx CxxCxx|1212|ln221|12|ln221|12|ln221.(22)dxxx)2)(1(1;解 CxxCxxdxxxdxxx|12|ln31|1|ln|2|(ln31)1121(31)2)(1(1.(23)xdx3cos;解 Cxxxdxxdxxdx3223sin31sinsin)sin1(sincoscos.(24)d
14、tt)(cos2;解 Cttdttdtt)(2sin4121)(2cos1 21)(cos2.(25)xdxx3cos2sin;解 xdxx3cos2sinCxxdxxxcos215cos101)sin5(sin21.(26)dxxx2coscos;解 Cxxdxxxdxxx21sin23sin31)21cos23(cos212coscos.(27)xdxx7sin5sin;解 Cxxdxxxxdxx2sin4112sin241)2cos12(cos217sin5sin.(28)xdxxsectan3;解 xdxxdxxxxdxxsectantansectansectan223 Cxxxdxs
15、ecsec31sec)1(sec32.(29)dxxx2arccos2110;解 Cxdxddxxxxxx10ln210)arccos2(1021arccos10110arccos2arccos2arccos22arccos2.(30)dxxxx)1(arctan;解 Cxxdxxdxxdxxxx2)(arctanarctanarctan2)1(arctan2)1(arctan.(31)221)(arcsinxxdx;解 Cxxdxxxdxarcsin1arcsin)(arcsin11)(arcsin222.(32)dxxxx2)ln(ln1;解 Cxxxxdxxdxxxxln1)ln()ln
16、(1)ln(ln122.(33)dxxxxsincostanln;解 xdxxxdxxxdxxxxtantantanlnsectantanlnsincostanln2 Cxxdx2)tan(ln21tanlntanln.(34)dxxax222(a0);解 dttadttatdtatatataxdxxax22cos1sincoscossinsin22222222令,CxaxaxaCtata222222arcsin22sin421.(35)12xxdx;解 CxCtdttdtttttxxxdx1arccostansectansec1sec12令.或 Cxxdxdxxxxxdx1arccos111
17、111112222.(36)32)1(xdx;解 Cttdttdttxxdxsincostan)1(tan1tan)1(3232令Cxx12.(37)dxxx92;解 tdttdtttxdxxx222tan3)sec3(sec39sec9sec39令 CxxCttdtt3arccos393tan3)1cos1(322.(38)xdx21;解 CxxCttdtttdtttxxdx)21ln(2)1ln()111(11221令.(39)211xdx;解 dttdtttdtttxxdx)2sec211()cos111(coscos11sin1122令 CxxxCtttCtt211arcsincos1
18、sin2tan.(40)21 xxdx.解 dttttttttdttttxxxdxcossinsincossincos21coscossin1sin12令 Ctttttdttdt|cossin|ln2121)cos(sincossin12121 Cxxx|1|ln21arcsin212.习题 43 求下列不定积分:1.xdxxsin;解 Cxxxxdxxxxxdxdxxsincoscoscoscossin.2.xdxln;解 Cxxxdxxxxxdxxxdxlnlnlnlnln.3.xdxarcsin;解 xxdxxxdxarcsinarcsinarcsin dxxxxx21arcsin Cx
19、xx21a r c s i n.4.dxxex;解 dxexexdedxxexxxx CxeCexexxx)1(.5.xdxx ln2;解 xdxxxxdxxdxxln31ln31ln31ln3332 Cxxxdxxxx332391ln3131ln31.6.xdxexcos;解 因为 xdxexexdexexdexdxexxxxxxsinsinsinsinsincos xxxxxxdexexexdexecoscossincossin xdxexexexxxcoscossin,所以 CxxeCxexexdxexxxx)cos(sin21)cossin(21cos.7.dxxex2sin2;解 因
20、为 xxxxdexxexdedxxe22222cos22cos22cos22sin 2sin82cos22cos42cos22222xdexedxxexexxxx xxxdexxexe2222sin82sin82cos2 dxxexexexxx2sin162sin82cos2222,所以 Cxxedxxexx)2sin42(cos1722sin22.8.dxxx2cos;解 Cxxxdxxxxxxddxxx2cos42sin22sin22sin22sin22cos.9.xdxx arctan2;解 dxxxxxxdxxdxx233321131arctan31arctan31arctan 223
21、2223)111(61arctan31161arctan31dxxxxdxxxxx Cxxxx)1ln(6161arctan31223.10.xdxx2tan 解 xxdxxdxxdxxdxxxxdxxtan21sec)1(sectan2222 Cxxxxxdxxxx|cos|lntan21tantan2122.11.xdxx cos2;解 xxdxxxdxxxxxdxxdxxcos2sin2sinsinsincos2222 Cxxxxxxdxxxxxsin2cos2sincos2cos2sin22.12.dttet 2;解 dtetetdedttetttt2222212121 CteCete
22、ttt)21(214121222.13.xdx2ln;解 xdxxxdxxxxxxxdxln2ln1ln2lnln222 Cxxxxxdxxxxxxx2ln2ln12ln2ln22.14.xdxxxcossin;解 xdxxxxxdxdxxxdxxx2cos412cos412cos412sin21cossin Cxxx2sin812cos41.15.dxxx2cos22;解 xdxxxxxxdxxdxxxdxxxsinsin2161sin2161)cos1(212cos2323222 xdxxxxxxxxdxxxcoscossin2161cossin21612323 Cxxxxxxsincos
23、sin216123.16.dxxx)1ln(;解 dxxxxxdxxdxxx1121)1ln(21)1ln(21)1ln(222 dxxxxx)111(21)1ln(212 Cxxxxx)1ln(212141)1ln(2122.17.xdxx2sin)1(2;解 xdxxxxxdxxdxx22cos212cos)1(212cos)1(212sin)1(222 xxdxx2sin212cos)1(212 xdxxxxx2sin212sin212cos)1(212 Cxxxxx2cos412sin212cos)1(212.18.dxxx23ln;解 xdxxxxxdxxxxxddxxx223333
24、23ln13ln1ln1ln11lnln xdxxxxxxxdxx22323ln13ln3ln11ln3ln1 xxdxxxxdxxxxxxx1ln6ln3ln1ln16ln3ln123223 dxxxxxxxx22316ln6ln3ln1 Cxxxxxxx6ln6ln3ln123.19.dxex3;解 ttxdetdtettxdxe223333令 tttttdeetdtteet636322 dteteetttt6632 Ceteetttt6632 Cxxex)22(33323.20.xdxlncos;解 因为 dxxxxxxxdx1lnsinlncoslncos dxxxxxxxxxdxxx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 上册 第六 课后 习题 详细 图文 答案 第四 23377
限制150内