高中数学专题四--椭圆、双曲线、抛物线(共14页).docx





《高中数学专题四--椭圆、双曲线、抛物线(共14页).docx》由会员分享,可在线阅读,更多相关《高中数学专题四--椭圆、双曲线、抛物线(共14页).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学专题四椭圆、双曲线、抛物线圆锥曲线知识点小结一、椭圆:(1)椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。注意:表示椭圆;表示线段;没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图 形xOF1F2PyA2A1B1B2A1xOF1F2PyA2B2B1顶 点对称轴轴,轴;短轴为,长轴为焦 点焦 距 离心率(离心率越大,椭圆越扁)通 径(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3常用结论:(1)椭圆的两个焦点为,过的直线交椭圆于两点,则的
2、周长= (2)设椭圆左、右两个焦点为,过且垂直于对称轴的直线交椭圆于两点,则的坐标分别是 二、双曲线:(1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。注意:与()表示双曲线的一支。表示两条射线;没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图 形xOF1F2PyA2A1yxOF1PB2B1F2顶 点对称轴轴,轴;虚轴为,实轴为焦 点焦 距 离心率(离心率越大,开口越大)渐近线通 径(3)双曲线的渐近线:求双曲线的渐近线,可令其右边的1为0,即得,因式分
3、解得到。与双曲线共渐近线的双曲线系方程是;(4)等轴双曲线为,其离心率为(4)常用结论:(1)双曲线的两个焦点为,过的直线交双曲线的同一支于两点,则的周长= (2)设双曲线左、右两个焦点为,过且垂直于对称轴的直线交双曲线于两点,则的坐标分别是 三、抛物线:(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。其中:定点为抛物线的焦点,定直线叫做准线。(2)抛物线的标准方程、图象及几何性质:焦点在轴上,焦点在轴上,焦点在轴上,焦点在轴上,开口向右开口向左开口向上开口向下标准方程图 形xOFPyOFPyxOFPyxOFPyx顶 点对称轴轴轴焦 点离心率准 线通 径焦半径焦点弦
4、焦准距四、弦长公式: 其中,分别是联立直线方程和圆锥曲线方程,消去 y后所得关于x的一元二次方程的判别式和的系数五、弦的中点坐标的求法法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x的一元二次方程设,由韦达定理求出;(3)设中点,由中点坐标公式得;再把代入直线方程求出。法(二):用点差法,设,中点,由点在曲线上,线段的中点坐标公式,过A、B两点斜率公式,列出5个方程,通过相减,代入等变形,求出。六、求离心率的常用方法:法一,分别求出a,c,再代入公式法二、建立a,b,c满足的关系,消去b,再化为关于e的方程,最后解方程求e (求e时,要注意椭圆离心率取值范围是0
5、e1,而双曲线离心率取值范围是e1)高考专题训练椭圆、双曲线、抛物线一、选择题: 1(2011辽宁)已知F是抛物线y2x的焦点,A,B是抛物线上的两点,|AF|BF|3,则线段AB的中点M到y轴的距离为()A.B1C.D.答案:C2(2011湖北)将两个顶点在抛物线y22px(p0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()An0 Bn1Cn2 Dn3答案:C3(2011全国)已知抛物线C:y24x的焦点为F,直线y2x4与C交于A,B两点,则cosAFB()A. B.C D答案:D4(2011浙江)已知椭圆C1:1(ab0)与双曲线C2:x21有公共的焦点,C2的一条渐近线与以
6、C1的长轴为直径的圆相交于A,B两点若C1恰好将线段AB三等分,则()Aa2 Ba213Cb2 Db22答案:C5(2011福建)设圆锥曲线的两个焦点分别为F1,F2,若曲线上存在点P满足|PF1|:|F1F2|:|PF2|4:3:2,则曲线的离心率等于()A.或 B.或2C.或2 D.或答案:A6(2011邹城一中5月模拟)设F1,F2是双曲线1(a0,b0)的左、右两个焦点,若双曲线右支上存在一点P,使()0(O为坐标原点),且|PF1|PF2|,则双曲线的离心率为()A. B.1C. D.1答案:D二、填空题: 7(2011江西)若椭圆1的焦点在x轴上,过点作圆x2y21的切线,切点分别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 专题 椭圆 双曲线 抛物线 14

限制150内