高中数学直线与圆的方程知识点总结(共4页).doc
《高中数学直线与圆的方程知识点总结(共4页).doc》由会员分享,可在线阅读,更多相关《高中数学直线与圆的方程知识点总结(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 高中数学之直线与圆的方程一、概念理解:1、倾斜角:找:直线向上方向、x轴正方向; 平行:=0; 范围:0180 。2、斜率:找k :k=tan (90); 垂直:斜率k不存在; 范围: 斜率 k R 。3、 斜率与坐标: 构造直角三角形(数形结合); 斜率k值于两点先后顺序无关; 注意下标的位置对应。4、 直线与直线的位置关系: 相交:斜率(前提是斜率都存在) 特例-垂直时: ; 斜率都存在时: 。 平行: 斜率都存在时:; 斜率都不存在时:两直线都与x轴垂直。 重合: 斜率都存在时:;二、方程与公式:1、直线的五个方程: 点斜式: 将已知点直接带入即可; 斜截式:
2、 将已知截距直接带入即可; 两点式: 将已知两点直接带入即可; 截距式: 将已知截距坐标直接带入即可; 一般式: ,其中A、B不同时为0 用得比较多的是点斜式、斜截式与一般式。2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式: 两点间距离: 点到直线距离: 平行直线间距离: 4、中点、三分点坐标公式:已知两点 AB中点: AB三分点: 靠近A的三分点坐标 靠近B的三分点坐标中点坐标公式,在求对称点、第四章圆与方程中,经常用到。三分点坐标公式,用得较少,多见于大题难题。5.直线的对称性问题 已知点关于已知直线的对称:设这个点为P(x0,y0),对称后的点坐标为P(x,y)
3、,则pp的斜率与已知直线的斜率垂直,且pp的中点坐标在已知直线上。3、 解题指导与易错辨析:1、解析法(坐标法): 建立适当直角坐标系,依据几何性质关系,设出点的坐标; 依据代数关系(点在直线或曲线上),进行有关代数运算,并得出相关结果;yxo 将代数运算结果,翻译成几何中“所求或所要证明”。2、 动点P到两个定点A、B的距离“最值问题”: 的最小值:找对称点再连直线,如右图所示: 的最大值:三角形思想“两边之差小于第三边”; 的最值:函数思想“转换成一元二次函数,找对称轴”。3、 直线必过点: 含有一个参数-y=(a-1)x+2a+1 = y=(a-1)(x+2)+3令:x+2=0 = 必过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 直线 方程 知识点 总结
限制150内