教育专题:教育专题:【精品课件】211合情推理(1).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《教育专题:教育专题:【精品课件】211合情推理(1).ppt》由会员分享,可在线阅读,更多相关《教育专题:教育专题:【精品课件】211合情推理(1).ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.12.1合情推理与演绎推理合情推理与演绎推理2.1.12.1.1合情推理合情推理 3 37 71010 3 3171720201313171730301010 3 37 72020 3 317173030 131317176 6 6 63+33+33+33+3,8 8 8 83+5,3+5,3+5,3+5,101010105+5,5+5,5+5,5+5,100010001000100029+97129+97129+97129+971,1002=139+863,1002=139+863,1002=139+863,1002=139+863,猜想任何一个不小于猜想任何一个不小于猜想任何一个不小于
2、猜想任何一个不小于6 6的的的的偶数都等于两个奇质数的和偶数都等于两个奇质数的和偶数都等于两个奇质数的和偶数都等于两个奇质数的和.数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠哥德巴赫猜想哥德巴赫猜想哥德巴赫猜想哥德巴赫猜想一个规律:一个规律:一个规律:一个规律:偶数奇质数奇质数偶数奇质数奇质数偶数奇质数奇质数偶数奇质数奇质数哥德巴赫猜想的过程:哥德巴赫猜想的过程:具体的材料具体的材料观察分析观察分析猜想出一般性的结论猜想出一般性的结论归纳推理的过程:归纳推理的过程:由某类事物的由某类事物的 具有某些特征具有某些特征,推出该类事物的推出该类事物的 都具有这些特
3、征都具有这些特征的推理的推理,或者由或者由 概括出概括出 的推理的推理,称为称为归纳推理归纳推理(简称归纳简称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论 1,3,5,7,由此你猜想出第,由此你猜想出第个数是个数是_.这就是从这就是从部分到整体部分到整体,从从个别到一般个别到一般的的归纳推理归纳推理.统计初步中的用样本估计总体统计初步中的用样本估计总体 通过从总体中抽取通过从总体中抽取部分对象部分对象进进行观测或试验,进而对行观测或试验,进而对整体整体做出推断做出推断.意思是从一片树叶的凋落,知道秋意思是从一片树叶的凋落,知道秋天将要来到天将要来到.比喻由比喻由
4、细微的迹象细微的迹象看出看出整体整体形势形势的变化,由的变化,由部分部分推知推知全体全体.成语成语”一叶知秋一叶知秋”1.已知数列已知数列 的第一项的第一项 =1,且且 (1,2,3,),请归纳出这个数列的通项公式为请归纳出这个数列的通项公式为_.2.2.数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E,E,然后然后然后然后探求面数探求面数探求面数探求面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系之间的关系之间的关系之间的关系.
5、四棱柱四棱柱四棱柱四棱柱三棱锥三棱锥三棱锥三棱锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱锥四棱锥四棱锥四棱锥尖顶塔尖顶塔尖顶塔尖顶塔凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E
6、E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔四棱柱四棱柱四棱柱四棱柱6 68 81212凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体凸多
7、面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四
8、棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥9169尖顶塔尖顶塔6 69 95 59 95 55 58 816169 9凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔6 68 812126 64 44 412128 86 6猜想凸多面体的面数猜想凸多面体的面数猜想凸多面
9、体的面数猜想凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系式为:之间的关系式为:之间的关系式为:之间的关系式为:FVE2欧拉公式欧拉公式归纳推理的基础归纳推理的基础归纳推理的作用归纳推理的作用归纳推理归纳推理观察、分析观察、分析发现新事实、发现新事实、获得新结论获得新结论由部分到整体、由部分到整体、个别到一般的推理个别到一般的推理注意注意归纳推理的结论不一定成立归纳推理的结论不一定成立数学巩固:1.在数列在数列an中,中,2.试猜想这个数列的通项公式。试猜想这个数列的通项公式。2.12.1合情推理与演绎推理合情推理与演绎推理2.1.12.1.
10、1类比推理类比推理复习复习2.归纳推理的一般步骤归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的从已知的相同性质中推出一个明确表达的一般性命题一般性命题(猜想猜想).1.什么是归纳推理什么是归纳推理?部分整体部分整体特殊特殊 一般一般从一个传说说起:春秋时代鲁国的公输班(后从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子霉事却使他发明了锯子
11、.他的思路是这样的:他的思路是这样的:茅草是齿形的茅草是齿形的;茅草能割破手茅草能割破手.我需要一种能割断木头的工具;我需要一种能割断木头的工具;它也可以是齿形的它也可以是齿形的.这个推理过程是归纳推理吗?这个推理过程是归纳推理吗?试根据等式的性质猜想不等式的性质。试根据等式的性质猜想不等式的性质。等式的性质:等式的性质:(1)a=ba+c=b+c;(2)a=b ac=bc;(3)a=ba2=b2;等等。等等。猜想不等式的性质:猜想不等式的性质:(1)aba+cb+c;(2)ab acbc;(3)aba2b2;等等。等等。问:这样猜想出的结论是否一定正确?问:这样猜想出的结论是否一定正确?火星
12、火星地球地球相似点相似点:绕太阳运转、绕轴自转、有大气层、有季节变换、大部绕太阳运转、绕轴自转、有大气层、有季节变换、大部分时间的温度适合地球上的某些已知生物的生存等。分时间的温度适合地球上的某些已知生物的生存等。地球上有生命地球上有生命火星上可能有生命火星上可能有生命猜想猜想火星上是否有生命?火星上是否有生命?相似点相似点:由两类对象具有某些类似特征和其中一类对象的由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推某些已知特征,推出另一类对象也具有这些特征的推理称为理称为类比推理类比推理.(.(简称:简称:类比类比)类比推理的定义类比推理的定义:简言之,
13、类比推理是由简言之,类比推理是由特殊到特殊特殊到特殊的推理的推理类比推理的特点类比推理的特点;1.1.类比是从人们已经掌握了的事物的属性类比是从人们已经掌握了的事物的属性,推测正在研究的推测正在研究的事物的属性事物的属性,是是以旧有的认识为基础以旧有的认识为基础,类比出新的结果类比出新的结果.2.2.类比是从一种事物的类比是从一种事物的特殊属性特殊属性推测另一种事物的推测另一种事物的特殊属性特殊属性.3.3.类比的结果是猜测性的类比的结果是猜测性的不一定可靠不一定可靠,但它却有发现的功能但它却有发现的功能.类比推理的一般步骤类比推理的一般步骤:观察、比较观察、比较联想、类推联想、类推猜想新结论
14、猜想新结论例例1、试将平面上的圆与空间的球进行类比、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定圆的定义:平面内到一个定点的距离等于定长的点的集合长的点的集合.球的定义:到一个定点的距离等于定长的点球的定义:到一个定点的距离等于定长的点的集合的集合.圆圆弦弦直径直径周长周长面积面积球球截面圆截面圆大圆大圆表面积表面积体积体积圆的概念和性质圆的概念和性质球的概念和性质球的概念和性质与圆心距离相等的两弦相等与圆心距离相等的两弦相等与圆心距离不相等的两弦不相与圆心距离不相等的两弦不相等等,距圆心较近的弦较长距圆心较近的弦较长以点以点(x(x0 0,y,y0 0)为圆心为圆
15、心,r,r为半径为半径的圆的方程为的圆的方程为(x-x(x-x0 0)2 2+(y-y+(y-y0 0)2 2=r=r2 2圆心与弦圆心与弦(非直径非直径)中点的连线中点的连线垂直于弦垂直于弦球心与不过球心的截面球心与不过球心的截面(圆面圆面)的圆心的连线垂直于截面的圆心的连线垂直于截面与球心距离相等的两截面面积相等与球心距离相等的两截面面积相等与球心距离不相等的两截面面积不与球心距离不相等的两截面面积不相等相等,距球心较近的面积较大距球心较近的面积较大以点以点(x(x0 0,y,y0 0,z,z0 0)为球心为球心,r,r为半为半径的球的方程为径的球的方程为(x-x(x-x0 0)2 2+(
16、y-+(y-y y0 0)2 2+(z-z+(z-z0 0)2 2=r=r2 2利用圆的性质类比得出球的性质利用圆的性质类比得出球的性质球的体积球的体积球的表面积球的表面积圆的周长圆的周长 圆的面积圆的面积例例2 类比实数的加法和乘法类比实数的加法和乘法,列出它们相似的运算性质列出它们相似的运算性质.类比角度类比角度实数的加法实数的加法实数的乘法实数的乘法运算结果运算结果若若a,b R,则则a+b R运算律运算律(交换律和交换律和结合律结合律)a+b=b+a(a+b)+c=a+(b+c)逆运算逆运算加法的逆运算是减法加法的逆运算是减法,使得使得方程方程a+x=0有唯一解有唯一解x=-a单位元单
17、位元a+0=a若若a,b R,则则ab Rab=ba(ab)c=a(bc)乘法的逆运算是除法乘法的逆运算是除法,使得使得ax=1有唯一解有唯一解x=1/aa1=a通过例通过例1,例,例2你能得到你能得到类比推理的一般模式类比推理的一般模式吗?吗?类比推理的一般模式类比推理的一般模式:所以所以B类事物可能具有性质类事物可能具有性质d.A类事物具有性质类事物具有性质a,b,c,d,B类事物具有性质类事物具有性质a,b,c,(a,b,c与与a,b,c相似或相同)相似或相同)归纳推理和类比推理的共同点归纳推理和类比推理的共同点 归纳推理归纳推理和和类比推理类比推理都是根据已有的事实都是根据已有的事实,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品课件 教育 专题 精品 课件 211 合情 推理
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内