高中数学必修2立体几何复习(共6页).doc
《高中数学必修2立体几何复习(共6页).doc》由会员分享,可在线阅读,更多相关《高中数学必修2立体几何复习(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上考点一,几何体的概念与性质 【基础训练】1.判定下面的说法是否正确:(1) 有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱.(2) 有两个面平行,其余各面为梯形的几何体叫棱台.2.下列说法不正确的是( )A空间中,一组对边平行且相等的四边形一定是平行四边形。B.同一平面的两条垂线一定共面。C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。D.过一条直线有且只有一个平面与已知平面垂直。【高考链接】1.设和为不重合的两个平面,给出下列命题: (1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则
2、和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直。上面命题中,真命题的序号 (写出所有真命题的序号). 2.在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行考点二 三视图与直观图及面积与体积 【基础训练】1.如图(3),为正方体的面与面的中心,则四边形在该正方体的面上的投影可能是 . 2.如果一个水平放置的图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,那么原图形的面积是( )A. B C D3.在中, 若使其绕直线
3、旋转一周,则它形成的几何体的体积是( )A. B. C. D. 4. 已知一个长方体共一顶点的三个面的面积分别是,则这个长方体的对角线长是 . 若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积为 .5.正方体的内切球和外接球的半径之比为( )A. B. C. D. 6.一个正方体的顶点都在球面上 ,它的棱长为2,则球的表面积是( )A. B. C. D. 7.若三个球的表面积之比是1:2:3,则它们的体积之比是 .8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A. B. C. D. 以上都不对9.半径为 R的半圆卷成一个圆锥,则
4、它的体积为 .【高考链接】1.一个棱锥的三视图如图,则该棱锥的全面积为( )(A)48+12 (B)48+24 (C)36+12 (D)36+242.设某几何体的三视图如下则该几何体的体积为 3.如图1, ABC为三角形,/, 平面ABC且3= =AB,则多面体ABC -的正视图(也称主视图)是考点三 线面间位置关系 【基础训练】1.已知在四边形ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,,则EF与CD所成的角的度数是( )A. B. C. D.2.已知直线( ) B. C. D.【高考链接】1设是两条直线,是两个平面,则的一个充分条件是( )ABCD2.对两条不相交的空间
5、直线和,必定存在平面,使得( )(A)(B)(C) (D)3.已知直线m,n和平面满足,则( ) 或 或4.已知是两条不同直线,是三个不同平面,下列命题中正确的是( )ABCD 5.设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若,则 C若,则 D若,则 6.设,是两条不同的直线,是一个平面,则下列命题正确的是(A)若,则 (B)若,则(C)若,则 (D)若,则7.用、表示三条不同的直线,表示平面,给出下列命题:若,则;若,则;若,则;若,则.A. B. C. D.考点四 求空间图形中的角 【基础训练】1.直角的斜边,AC,BC与平面的角分别为,CD是斜边AB上的高,则CD
6、与平面所成的角为 .2.如图,正三棱柱V-ABC(顶点在地面上的射影是底面正三角形的中心)中,D,E,F分别是VC,VA,AC的中点,P为VB上任意一点,则直线DE与PF所成的角的大小是( )A. B. C. D.随点的变化而变化5.直线与平面所成的角为,则m与所成角的取值范围是 .【高考链接】题型一 异面直线所成的角1.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( )(A) (B) (C) (D) 2. 已知正四棱柱中,=,为重点,则异面直线与所形成角的余弦值为( )(A) (B) (C) (D) 3.如图,已知正三棱柱的各条棱长都相等,是侧棱的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 立体几何 复习
限制150内