《数学建模概率论.ppt》由会员分享,可在线阅读,更多相关《数学建模概率论.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模概率论现在学习的是第1页,共29页例5.0.1 某公司要采购一批产品,每件产品不 是合格品就是不合格品,但该批产品总有一 个不合格品率 p。由此,若从该批产品中随 机抽取一件,用 x 表示这一批产品的不合格 数,不难看出 x 服从一个二点分布b(1,p),但分布中的参数 p 是不知道的。一些问题:现在学习的是第2页,共29页 p 的大小如何;p 大概落在什么范围内;能否认为 p 满足设定要求(如 p 0.05)。现在学习的是第3页,共29页5.1 总体与个体总体与个体总体含义:研究对象的全体;数据:总体是一堆数,这堆数中有的出现的机会多,有的出现的机会小,因此用一个概率分布描述和归纳总
2、体是恰当的,从这个意义看,总体就是一个分布,而其数量指标就是服从这个分布的随机变量现在学习的是第4页,共29页例5.1.1 考察某厂的产品质量,以0记合格品,以1记不合格品,则 总体=该厂生产的全部合格品与不合格品 =由0或1组成的一堆数若以 p 表示这堆数中1的比例(不合格品率),则该总体可由一个二点分布表示:X 0 1P 1 p p现在学习的是第5页,共29页比如:两个生产同类产品的工厂的产品的总体 分布:X01p0.9830.017X01p0.9150.085现在学习的是第6页,共29页例5.1.2 在二十世纪七十年代后期,美国消费 者购买日产SONY彩电的热情高于购买美产 SONY彩电
3、,原因何在?1979年4月17日日本朝日新闻刊登调查报 告指出N(m,(5/3)2),日产SONY彩电的彩色浓 度服从正态分布,而美产SONY彩电的彩色浓 度服从(m5,m+5)上的均匀分布。原因在于总体的差异上!现在学习的是第7页,共29页图5.1.1 SONY彩电彩色浓度分布图现在学习的是第8页,共29页等级 I II III IV美产 33.3 33.3 33.3 0 日产 68.3 27.1 4.3 0.3表5.1.1 各等级彩电的比例(%)现在学习的是第9页,共29页5.1.2 样本样品、样本、样本量样本量:样本具有两重性 一方面,由于样本是从总体中随机抽取的,抽 取前无法预知它们的
4、数值,因此,样本是随机 变量,用大写字母 X1,X2,Xn 表示;另一方面,样本在抽取以后经观测就有确定的 观测值,因此,样本又是一组数值。此时用小 写字母 x1,x2,xn 表示是恰当的。简单起见,无论是样本还是其观测值,样本一般均用 x1,x2,xn 表示,应能从上下文中加以区别。现在学习的是第10页,共29页 独立性:样本中每一样品的取值不影响其 它样品的取值-x1,x2,xn 相互独立。要使得推断可靠,对样本就有要求,使样本能很好地代表总体。通常有如下两个要求:随机性:总体中每一个个体都有同等机会 被选入样本-xi 与总体X有相同的分布。样本的要求:简单随机样本现在学习的是第11页,共
5、29页设总体X具有分布函数F(x),x1,x2,xn 为取自该总体的容量为n的样本,则样本联合分布函数为用简单随机抽样方法得到的样本称为用简单随机抽样方法得到的样本称为简单随机样本,简单随机样本,也简称也简称样本。样本。于是,样本于是,样本 x x1 1,x x2 2,x xn n 可以看成是可以看成是独立同分布独立同分布(iid iid)的随机变量,的随机变量,其共同分布即为其共同分布即为总体分布。总体分布。现在学习的是第12页,共29页总体分为有限总体与无限总体实际中总体中的个体数大多是有限的。当个体数充实际中总体中的个体数大多是有限的。当个体数充分大时,将有限总体看作无限总体是一种合理的
6、抽分大时,将有限总体看作无限总体是一种合理的抽象。象。对无限总体,随机性与独立性容易实现,困难在于排对无限总体,随机性与独立性容易实现,困难在于排除有意或无意的人为干扰。除有意或无意的人为干扰。对有限总体,只要总体所含个体数很大,特别是与对有限总体,只要总体所含个体数很大,特别是与样本量相比很大,则独立性也可基本得到满足。样本量相比很大,则独立性也可基本得到满足。现在学习的是第13页,共29页更深刻的结果也是存在的,这就是格里纹科定理。更深刻的结果也是存在的,这就是格里纹科定理。定理定理5.2.15.2.1(格里纹科定理)(格里纹科定理)设设x1,x2,xn是取自是取自 总体分布函数为总体分布
7、函数为F F(x x)的样本的样本,F Fn n(x x)是其经验分是其经验分 布函数,布函数,当当n n时时,有,有P P supsup F Fn n(x x)F F(x x)0 0 =1=1格里纹科定理表明:格里纹科定理表明:当当n n 相当大时,经验分布函数是相当大时,经验分布函数是总体分布函数总体分布函数F F(x x)的一个良好的近似。的一个良好的近似。经典的统计学中一切统计推断都以样本为依据,其理由经典的统计学中一切统计推断都以样本为依据,其理由就在于此。就在于此。现在学习的是第14页,共29页5.3.1 统计量与抽样分布5.3 统计量及其分布当人们需要从样本获得对总体各种参数的认
8、识时,最好的方法是构造样本的函数,不同的函数反映总体的不同特征。定义5.3.1 设 x1,x2,xn 为取自某总体的样 本,若样本函数T=T(x1,x2,xn)中不含有任 何未知参数。则称T为统计量。统计量的分布 称为抽样分布。现在学习的是第15页,共29页按照这一定义:若 x1,x2,xn 为样本,则 以及经验分布函数F Fn n(x x)都是统计量。而当,2 未知时,x1,x1/等均不是统计量。尽管统计量不依赖于未知参数,但是它的分布一般是依赖于未知参数的。下面介绍一些常见的统计量及其抽样分布。现在学习的是第16页,共29页5.3.2 样本均值及其抽样分布 定义5.3.2 设 x1,x2,
9、xn为取自某总体的样本,其算术平均值称为样本均值,一般用 表示,即思考:在分组样本场合,样本均值如何计算?二者结果相同吗?xx=(x1+xn)/n现在学习的是第17页,共29页样本均值的抽样分布:定理5.3.3 设x1,x2,xn 是来自某个总体的样本,x为样本均值。(1)若总体分布为N(,2),则xx的精确分布为N(,2/n);(2)若总体分布未知或不是正态分布,但 E(x)=,Var(x)=2,则n 较大时 的渐近分 布为N(,2/n),常记为 。xAN(,2/n)这里渐近分布是指n 较大时的近似分布.现在学习的是第18页,共29页5.3.3 样本方差与样本标准差称为样本标准准差。s*=s
10、*2定义5.3.3称为样本方差,其算术平方根在n 不大时,常用 作为样本方差,其算术平方根也称为样本标准差。现在学习的是第19页,共29页5.3.4 样本矩及其函数 样本均值和样本方差的更一般的推广是样本矩,这是一类常见的统计量。定义5.3.4 ak=(xik)/n 称为样本 k 阶原点矩,特别,样本一阶原点矩就是样本均值。称为样本k阶中心矩矩。特别,样本二阶中心矩就是样本方差。bk=(xi x)k/n现在学习的是第20页,共29页5.3.6 样本分位数与样本中位数样本中位数也是一个很常见的统计量,它也是次序统计量的函数,通常如下定义:更一般地,样本p分位数mp可如下定义:现在学习的是第21页
11、,共29页5.4 三大抽样分布大家很快会看到,有很多统计推断是基于正态分布的假设的,以标准正态变量为基石而构造的三个著名统计量在实际中有广泛的应用,这是因为这三个统计量不仅有明确背景,而且其抽样分布的密度函数有明显表达式,它们被称为统计中的“三大抽样分布”。现在学习的是第22页,共29页5.4.1 2 分布(卡方分布)定义5.4.1 设 X1,X2,Xn,独立同分布于标准 正态分布N(0,1),则 2 2=X12+Xn2的分布称 为自由度为n 的 2 2分布,记为 2 2 2 2(n n)。当随机变量 2 2 2 2(n n)时,对给定 (01),称满足 P(2 2 1 12 2(n n)的
12、1 12 2(n n)是自由度为n1的卡方分布的1 分位数.分位数 1 12 2(n n)可以从附表3 中查到。现在学习的是第23页,共29页该密度函数的图像是一只取非负值的偏态分布 现在学习的是第24页,共29页5.4.2 F 分布定义5.4.2 设X1 2 2(m m),X2 2 2(n n),),X1与X2独立,则称 F=(X1/m)/(X2/n)的分布是自由度为 m 与 n 的 F分布,记为F F(m,n),其中m 称为分子自 由度,n 称为分母自由度。当随机变量F F(m,n)时,对给定 (01),称满足 P(F F1(m,n)=1)=1 的F1(m,n)是自由度为m 与 n 的F
13、分布的1 1 分位数。由 F 分布的构造知 F(n,m)=1/F1(m,n)。现在学习的是第25页,共29页该密度函数的图象也是一只取非负值的偏态分布 现在学习的是第26页,共29页5.4.3 t 分布 定义 5.4.3 设随机变量X1 与X2 独立,且X1 N(0,1),X2 2 2(n n),则称t=X1/X2/n的分布为自由度为n 的t 分布,记为t t(n)。现在学习的是第27页,共29页 t 分布的密度函数的图象是一个关于纵轴对称的分布,与标准正态分布的密度函数形状类似,只是峰比标准正态分布低一些尾部的概率比标准正态分布的大一些。现在学习的是第28页,共29页当随机变量t t(n)时,称满足P(t t1(n)=1)=1的 t1(n)是自由度为 n 的 t 分布的1 1分位数.分位数 t1(n)可以从附表4中查到。譬如 n=10,=0.05,那么从附表4上查得t10.05(10)=t0.95(10)=1.812.由于 t 分布的密度函数关于0 对称,故其分位数间有如下关系t(n1)=t1(n1)现在学习的是第29页,共29页
限制150内