高中数学空间向量及其运算教案五(共8页).doc
《高中数学空间向量及其运算教案五(共8页).doc》由会员分享,可在线阅读,更多相关《高中数学空间向量及其运算教案五(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课 题:空间向量及其运算(五)教学目的:1巩固空间向量数量积的概念;2熟练应用空间向量数量积解决立体几何中的一些简单问题教学重点:应用空间向量数量积解决问题教学难点:应用空间向量数量积解决问题 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:空间的一个平移就是一个向量向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量空间的两个向量可用同一平面内的两条有向线段来表示2空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下;运算律:加法交
2、换律:加法结合律:数乘分配律:3平行六面体:平行四边形ABCD平移向量到的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD它的六个面都是平行四边形,每个面的边叫做平行六面体的棱4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量向量与非零向量共线的充要条件是有且只有一个实数,使.要注意其中对向量的非零要求5 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于记作当我们说向量、共线(或/)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线6 共线向量定理
3、:空间任意两个向量、(),/的充要条件是存在实数,使.推论:如果为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式 其中向量叫做直线的方向向量.空间直线的向量参数表示式:或,中点公式 7向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的8共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使 或对空间任一点,有或 上面式叫做平面的向量表达式9 空间向量基本定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 空间 向量 及其 运算 教案
限制150内