逻辑函数的卡若图化简法课件.ppt
《逻辑函数的卡若图化简法课件.ppt》由会员分享,可在线阅读,更多相关《逻辑函数的卡若图化简法课件.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于逻辑函数的卡若图化简法第1页,此课件共28页哦02.04.20232复习复习与或表达式最简的标准是什么?公式化简法的优点?局限性?第2页,此课件共28页哦02.04.202331.3.5 1.3.5 逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法 公式化简法评价:优点:变量个数不受限制。缺点:目前尚无一套完整的方法,结果是否最简有时不易判断。利用卡诺图可以直观而方便地化简逻辑函数。它克服了公式化简法对最终化简结果难以确定等缺点。卡诺图是按一定规则画出来的方框图,是逻辑函数的图解化简法,同时它也是表示逻辑函数的一种方法。卡诺图的基本组成单元是最小项,所以先讨论一下最小项及最小项表达式。第3页,
2、此课件共28页哦02.04.202341.最小项及最小项表达式(1)最小项 具备以上条件的乘积项共八个,我们称这八个乘积项为三变量A、B、C的最小项。设A、B、C是三个逻辑变量,若由这三个逻辑变量按以下规则构成乘积项:每个乘积项都只含三个因子,且每个变量都是它的一个因子;每个变量都以反变量(A、B、C)或以原变量(A、B、C)的形式出现一次,且仅出现一次。AB是三变量函数的最小项吗?ABBC是三变量函数的最小项吗?推广:一个变量仅有原变量和反变量两种形式,因此N个变量共有2N个最小项。第4页,此课件共28页哦02.04.20235最小项的定义:对于N个变量,如果P是一个含有N个因子的乘积项,而
3、且每一个变量都以原变量或者反变量的形式,作为一个因子在P中出现且仅出现一次,那么就称P是这N个变量的一个最小项。表1-17三变量最小项真值表 第5页,此课件共28页哦02.04.20236(2)最小项的性质 对于任意一个最小项,只有一组变量取值使它的值为1,而变量取其余各组值时,该最小项均为0;任意两个不同的最小项之积恒为0;变量全部最小项之和恒为1。第6页,此课件共28页哦02.04.20237最小项也可用“mi”表示,下标“i”即最小项的编号。编号方法:把最小项取值为1所对应的那一组变量取值组合当成二进制数,与其相应的十进制数,就是该最小项的编号。表1-18 三变量最小项的编号表 第7页,
4、此课件共28页哦02.04.20238(3)最小项表达式 任何一个逻辑函数都可以表示为最小项之和的形式标准与或表达式。而且这种形式是惟一的,就是说一个逻辑函数只有一种最小项表达式。例1-7将Y=AB+BC展开成最小项表达式。解:或:第8页,此课件共28页哦02.04.202392.卡诺图及其画法 (1)卡诺图及其构成原则 卡诺图是把最小项按照一定规则排列而构成的方框图。构成卡诺图的原则是:N变量的卡诺图有2N个小方块(最小项);最小项排列规则:几何相邻的必须逻辑相邻。逻辑相邻:两个最小项,只有一个变量的形式不同,其余的都相同。逻辑相邻的最小项可以合并。几何相邻的含义:一是相邻紧挨的;二是相对任
5、一行或一列的两头;三是相重对折起来后位置相重。在五变量和六变量的卡诺图中,用相重来判断某些最小项的几何相邻性,其优点是十分突出的。第9页,此课件共28页哦02.04.202310图1-11 三变量卡诺图的画法 (2)卡诺图的画法 首先讨论三变量(A、B、C)函数卡诺图的画法。3变量的卡诺图有23个小方块;几何相邻的必须逻辑相邻:变量的取值按00、01、11、10的顺序(循环码)排列。相邻相邻第10页,此课件共28页哦02.04.202311图1-12 四变量卡诺图的画法相邻相邻不相邻正确认识卡诺图的“逻辑相邻”:上下相邻,左右相邻,并呈现“循环相邻”的特性,它类似于一个封闭的球面,如同展开了的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 逻辑 函数 卡若图化简法 课件
限制150内