大一高数下基本概念课件.ppt
《大一高数下基本概念课件.ppt》由会员分享,可在线阅读,更多相关《大一高数下基本概念课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于大一高数下基本概念现在学习的是第1页,共32页 第八章 第一节第一节一、区域一、区域二、多元函数的概念二、多元函数的概念三、多元函数的极限三、多元函数的极限四、多元函数的连续性四、多元函数的连续性机动 目录 上页 下页 返回 结束 多元函数的基本概念多元函数的基本概念 现在学习的是第2页,共32页一、一、区域区域1.邻域邻域点集称为点 P0 的 邻域邻域.例如例如,在平面上,(圆邻域)在空间中,(球邻域)说明:说明:若不需要强调邻域半径 ,也可写成点 P0 的去心邻域去心邻域记为机动 目录 上页 下页 返回 结束 现在学习的是第3页,共32页在讨论实际问题中也常使用方邻域,平面上的方邻域为
2、。因为方邻域与圆邻域可以互相包含.机动 目录 上页 下页 返回 结束 现在学习的是第4页,共32页2.区域区域(1)内点、外点、边界点设有点集 E 及一点 P:若存在点 P 的某邻域 U(P)E,若存在点 P 的某邻域 U(P)E=,若对点 P 的任一任一邻域 U(P)既含 E中的内点也含 E则称 P 为 E 的内点内点;则称 P 为 E 的外点外点;则称 P 为 E 的边界点边界点 .机动 目录 上页 下页 返回 结束 的外点,显然,E 的内点必属于 E,E 的外点必不属于 E,E 的边界点可能属于 E,也可能不属于 E.现在学习的是第5页,共32页(2)聚点聚点若对任意给定的 ,点P 的去
3、心机动 目录 上页 下页 返回 结束 邻域内总有E 中的点,则称 P 是 E 的聚点聚点.聚点可以属于 E,也可以不属于 E(因为聚点可以为 所有聚点所成的点集成为 E 的导集导集.E 的边界点)现在学习的是第6页,共32页D(3)开区域及闭区域 若点集 E 的点都是内点,则称 E 为开集;若点集 E E,则称 E 为闭集;若集 D 中任意两点都可用一完全属于 D 的折线相连,开区域连同它的边界一起称为闭区域.则称 D 是连通的;连通的开集称为开区域,简称区域;机动 目录 上页 下页 返回 结束。E 的边界点的全体称为 E 的边界,记作E;现在学习的是第7页,共32页3.n 维空间维空间n 元
4、有序数组的全体称为 n 维空间维空间,n 维空间中的每一个元素称为空间中的称为该点的第 k 个坐标坐标.记作即机动 目录 上页 下页 返回 结束 一个点点,当所有坐标称该元素为 中的零元,记作 O.现在学习的是第8页,共32页的距离距离记作中点 a 的 邻域邻域为机动 目录 上页 下页 返回 结束 规定为 与零元 O 的距离为现在学习的是第9页,共32页二、多元函数的概念二、多元函数的概念 引例引例:圆柱体的体积 定量理想气体的压强 三角形面积的海伦公式机动 目录 上页 下页 返回 结束 现在学习的是第10页,共32页定义定义1.设非空点集点集 D 称为函数的定义域定义域;数集称为函数的值域值
5、域 .特别地,当 n=2 时,有二元函数当 n=3 时,有三元函数映射称为定义在 D 上的 n 元函数元函数,记作机动 目录 上页 下页 返回 结束 现在学习的是第11页,共32页例如,二元函数定义域为圆域说明说明:二元函数 z=f(x,y),(x,y)D图形为中心在原点的上半球面.机动 目录 上页 下页 返回 结束 的图形一般为空间曲面 .三元函数 定义域为图形为空间中的超曲面.单位闭球现在学习的是第12页,共32页三、多元函数的极限三、多元函数的极限定义定义2.设 n 元函数点,则称 A 为函数(也称为 n 重极限)当 n=2 时,记二元函数的极限可写作:P0 是 D 的聚若存在常数 A,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大一 高数下 基本概念 课件
限制150内