勾股定理逆定理教学设计.pdf
《勾股定理逆定理教学设计.pdf》由会员分享,可在线阅读,更多相关《勾股定理逆定理教学设计.pdf(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第 1 页 共 36 页 勾股定理逆定理教学设计 勾股定理逆定理教学设计 1 一、教材分析 (一)教材所处的地位 这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。2、会初步运用勾股定理进行简单的计算和实际运用。3、在探索勾股定理的过程中,让学生经历“观察猜想归纳验证”的数学思想,并体会数形
2、结合和特殊到一般的思想方法。4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)本课的教学重点:探索勾股定理 本课的教学难点:以直角三角形为边的正方形面积的计算。第 2 页 共 36 页 二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交
3、流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。三、教学过程设计 (一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高 3 米,消防队员取来 6.5 米长的云梯,如果梯子的底部离墙基的距离是 2.5 米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问 第 3 页 共 36 页 题为切入点
4、引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。(二)实验操作:1、投影课本图 11,图 12 的有关直角三角形问题,让学生计算正方形 A,B,C 的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将 C 划分为 4 个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形 A,B,C 的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与
5、探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图 13,图 14,同样让学生计算正方形的面积,但正方形 C 的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下 第 4 页 共 36 页 了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。3、给出一个边长为 0.5,1
6、.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。(三)归纳验证:1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示
7、,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教 第 5 页 共 36 页 育。(四)问题解决:让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。(五)课堂小结:主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。(六)布置作业:课本 P6 习题 1.11,2,3,4 一方面巩固勾股
8、定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。四、设计说明 1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终 第 6 页 共 36 页 身发展也有一定的作用。3、关于练习的设计,除两个实际
9、问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。勾股定理逆定理教学设计 2 教学目标 知识与技能:了解勾股定理的一些证明方法,会简单应用勾股定理解决问题 过程与方法:在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。情感态度价值观:通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。教学过程 第 7 页 共
10、 36 页 1、创设情境 问题 1 国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002 年在北京召开了第 24 届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。2、探究勾股定理 观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界 问题 2 相传 2
11、500 多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论 第 8 页 共 36 页 追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论 问题 3:数学研究遵循从特殊到一般的数学思想,既然我
12、们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是 1)中,这种特殊的数量关系也同样成立。师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。勾股定理逆定理教学设计 3 一、教材分析 勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写
13、时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活 第 9 页 共 36 页 动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。教学重点:勾股定理的证明和应用。教学难点:勾股定理的证明。二、教法和学法 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的
14、主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。第 10 页 共 36 页 3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。三、教学程序 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新 1、由故事引入,3000 多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。如果勾是 3,
15、股是 4,那么弦等于 5。这样引起学生学习兴趣,激发学生求知欲。2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。3、板书课题,出示学习目标。(二)初步感知理解教材 教师指导学生自学教材,通过自学感悟理解新知。体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。(三)质疑解难讨论归纳 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;第 11 页 共 36 页 (1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?(3)如何运用勾股定理?是
16、否还有其他形式?这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨。最后,师生共同归纳,形成一致意见,最终解决疑难。(四)巩固练习强化提高 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。2、出示例 1 学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突
17、出教学重点。(五)归纳总结练习反馈 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电 第 12 页 共 36 页 教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。勾股定理逆定理教学设计 4 一、教学目标 (一)知识点 1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。2、会利用勾股定理解释生活中的简单现象。(二)能力训练要求 1、在学生充分观察、归纳、猜
18、想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。(三)情感与价值观要求 1、培养学生积极参与、合作交流的意识。2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。二、教学重、难点 重点:探索和验证勾股定理。第 13 页 共 36 页 难点:在方格纸上通过计算面积的方法探索勾股定理。三、教学方法 交流探索猜想。在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。四、教具准备 1、学生每人
19、课前准备若干张方格纸。2、投影片三张:第一张:填空(记作 1.1.1A);第二张:问题串(记作 1.1.1B);第三张:做一做(记作 1.1.1C)。五、教学过程 、创设问题情境,引入新课 出示投影片(1.1.1A)(1)三角形按角分类,可分为_、_、_。(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?(3)有两个直角三角形,如果有两条边对应相等,那么这两 第 14 页 共 36 页 个直角三角形一定全等吗?勾股定理逆定理教学设计 5 教学目标 1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
20、2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。教学重点 了解勾股定理的由来,并能用它来解决一些简单的问题。教学难点 勾股定理的探究以及推导过程。教学过程 一、创设问题情景、导入新课 首先出示:投影 1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。出示课件观察后回答:第 15 页 共 36 页 1、观察图 12 正方形 A 中有_个
21、小方格,即 A 的面积为_个单位。正方形 B 中有_个小方格,即 B 的面积为_个单位。正方形 C 中有_个小方格,即 C 的面积为_个单位。2、你是怎样得出上面的结果的?3、在学生交流回答的基础上教师进一步设问:图 12 中,A,B,C 面积之间有什么关系?学生交流后得到结论:A+B=C。二、层层深入、探究新知 1、做一做 出示投影 3(书中 P3 图 13)提问:(1)图 13 中,A,B,C 之间有什么关系?(2)从图12,13 中你发现什么?学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。2、议一议 图 12、13 中,你能用三角形的边长表
22、示正方形的面积吗?(1)你能发现直角三角形三边长度之间的关系吗?在同学交 第 16 页 共 36 页 流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为 a,b,斜边为 c 那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。(2)分别以 5 厘米和 12 厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为 13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?3、想一想 我们常见的电视的尺寸:29 英寸(74 厘米)的电视机,指的是屏幕的长吗?还是指的
23、是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?三、巩固练习。1、在图 11 的问题中,折断之前旗杆有多高?2、错例辨析:ABC 的两边为 3 和 4,求第三边 解:由于三角形的两边为 3、4 所以它的第三边的 c 应满足 =25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形 ABC 并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉ABC 是 第 17 页 共 36 页 直角三角形,第三边 C 也不一定是满足,题目中并未交待 C 是斜边。综上所述这个题目条件不足,第三边无法求得 四、课堂小结 鼓
24、励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。五、布置作业勾股定理逆定理教学设计 6 教材分析 1.勾股定理的逆定理是研究特殊三角形直角三角形的一种判定方法,体现了数形结合的思想。2.通过勾股定理与它的逆定理的学习,加深了学生对性质与判定之间辨证统一关系的认识。3.完善了知识结构,为后继学习打下基础。学情分析 初中生已经具备一定的独立思考和探索能力,并能在探索过程中形成自已的观点,能在倾听别人意见的过程中逐渐完善自已的想法,而且本班学生比较上进,思维活跃,愿意表达自已的见解,有一定的互动互助基础。教学目标 1.知识与技能:第 18 页 共 36 页 (1)
25、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。2.过程与方法 (1)通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程。(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。(3)通过对勾股定理的逆定理的证明,体会数形结合方法在问题解决中的作用,并能应用勾股定理的逆定理来解决相关问题。3情感态度 (1)通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐与辨证统一的关系 (2)在探索勾股定理的逆定理的活动中,通过一系列的富有探究
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 逆定理 教学 设计
限制150内