高中数学之三角函数类型题(共10页).doc
《高中数学之三角函数类型题(共10页).doc》由会员分享,可在线阅读,更多相关《高中数学之三角函数类型题(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学之三角函数类型题:1已知tanx=2,求sinx,cosx的值解:因为,又sin2xcos2x=1,联立得解这个方程组得2求的值解:原式3若,求sinxcosx的值解:法一:因为所以sinxcosx=2(sinxcosx),得到sinx=3cosx,又sin2xcos2x=1,联立方程组,解得所以法二:因为所以sinxcosx=2(sinxcosx),所以(sinxcosx)2=4(sinxcosx)2,所以12sinxcosx=48sinxcosx,所以有4求证:tan2xsin2x=tan2xsin2x证明:法一:右边tan2xsin2x=tan2x(ta
2、n2xcos2x)=tan2x(1cos2x)=tan2xsin2x,问题得证法二:左边=tan2xsin2x=tan2x(1cos2x)=tan2xtan2xcos2x=tan2xsin2x,问题得证5求函数在区间0,2p 上的值域解:因为0x2,所以由正弦函数的图象,得到所以y1,26求下列函数的值域(1)ysin2xcosx+2;(2)y2sinxcosx(sinxcosx)解:(1)y=sin2xcosx21cos2xcosx2=(cos2xcosx)3,令t=cosx,则利用二次函数的图象得到(2)y2sinxcosx(sinxcosx)=(sinxcosx)21(sinxcosx)
3、,令t=sinxcosx,则则,利用二次函数的图象得到7若函数y=Asin(x+)(0,0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式解:由最高点为,得到,最高点和最低点间隔是半个周期,从而与x轴交点的间隔是个周期,这样求得,T=16,所以又由,得到可以取8已知函数f(x)=cos4x2sinxcosxsin4x()求f(x)的最小正周期; ()若求f(x)的最大值、最小值数的值域解:()因为f(x)=cos4x2sinxcosxsin4x(cos2xsin2x)(cos2xsin2x)sin2x所以最小正周期为()若,则,所以当x=0时,f
4、(x)取最大值为当时,f(x)取最小值为1 已知,求(1);(2)的值.解:(1); (2) .说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。2 求函数的值域。解:设,则原函数可化为,因为,所以当时,当时,所以,函数的值域为。3已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解: (1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,所以成立,从而函数的图像关于直线对称。4 已知函数y=cos2x+sinxcosx+1 (xR
5、),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(xR)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos2x+sinxcosx+1= (2cos2x1)+ +(2sinxcosx)+1=cos2x+sin2x+=(cos2xsin+sin2xcos)+=sin(2x+)+所以y取最大值时,只需2x+=+2k,(kZ),即 x=+k,(kZ)。所以当函数y取最大值时,自变量x的集合为x|x=+k,kZ(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 三角函数 类型 10
限制150内