液压减震器发展及工作原理(共14页)201.pdf
《液压减震器发展及工作原理(共14页)201.pdf》由会员分享,可在线阅读,更多相关《液压减震器发展及工作原理(共14页)201.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 一、减震器的发展(fzhn)历史 减震器从出现到今天(jntin)已经有了 100 多年的历史,最早车辆(chling)的减震系统 由弹簧构成,虽然弹簧可以减轻(jinqng)路面冲击,性能较可靠,但它容易产生共振现象。在 1908年,世界第一台液压减震器研制成功,它用隔板将橡胶制成节流通道分为两部分,通过油液与节流通道摩擦,达到减震目的。之后,在 20 世纪 30年代,摇臂式减震器得到普遍应用,工作压力在 l0MPa 20MPa之间,但结构复杂、易损坏、体积大,最终被淘汰。二战之后,简式液压减震器取代了摇臂式减震器,其成本低,寿命长,但容易出现充油不及时的问题,若充油不及时,会影响减震效果
2、,产生噪音与冲击。直到 20世纪 50年代,充气式减震器的出现解决了以上的问题,在双筒内充入低压 04MPa06MPa的氮气可以解决充油不及时的问题。同时单筒式充气减震器也开始发展,其采用浮动活塞的结构,使充入的氮气形成 20MPa25MPa的高压气体,性能优于双筒式减震器,而且质量轻、性能好,但其成本较高。油压减振器是铁道机车车辆上的一个重要部件。由于机车车辆的车轮与钢轨面之间是钢对钢的接触,因此,车轮表面的不规则和轨道的不平顺都直接经车轮传到悬挂部件上去,使机车车辆各部分高频和低频振动。如果这种振动不经过减振器来衰减,就会降低机械部件的结构强度和使用寿命,恶化运行品质。油压减振器其性能优劣
3、直接影响到行车的安全性和舒适性。尤其近年来我国铁路进入一个飞速发展时期,特别是在铁路跨越式发展政策的指引下,我国铁路将会进入一个全新的发展阶段。二、减振器的基本结构大体相同,主要区别是:(1)活塞的行程以及接头的安装尺寸不同;(2)GS H、GYAW、G OH 3 种水平布置的减振器多了橡胶囊;(3)GY AW、GOH 的节流阀与另外 3 种不同。基本结构见图 4-1、图 4-2,G S V、GS H、GYAW 图略。1上接头(ji tu)2橡胶球较 3销轴 4防尘罩组成(z chn)5活塞杆 6防尘(fn chn)圈 7压盖;8密封圈;9 油封圈;10螺盖;110型密封圈 12密封圈 13活
4、塞(husi)14节流阀弹簧 15调节螺钉 16压缩阀(一)17压缩阀(二)18 回油阀片 19回油阀座 20 底阀座 21弹簧螺盖 22底阀座弹簧 23底阀压缩阀 24油缸 25储油罐 26液压油 27拉伸阀(一)28拉伸阀(二)29导承 图 4-1 一系垂向简振器 1上接头(ji tu)2橡胶球较 3销轴 4防尘罩组成(z chn)5活塞杆 6防尘(fn chn)圈 7压盖 8密封圈 9 油封圈 10螺盖 110型密封圈 12密封圈 13活塞(husi)14节流阀弹簧 15调节螺钉 16压缩阀(一)17压缩阀(二)18 回油阀片 19回油阀座 20 底阀座 21弹簧螺盖 22底阀座弹簧 2
5、3底阀压缩阀 24油缸 25储油罐 26液压油 27拉伸阀(一)28拉伸阀(二)29卡环 30紧固带 31橡胶气囊 32导承 图 4-2 耦合减振器 三、作用(zuyng)原理 减振器的工作(gngzu)原理,下面以一系垂向减振器为例来加以说明。当拉伸运动时,活塞 I3 向上移动(ydng),油缸 24 上部油压上升通过拉伸阀27、28 压缩节流阀弹簧 l4,使拉伸阀 27、28 下移阀口打开,油通过阀口流入下腔。产生阻力由于上部活塞杆5 占有一定的油的体积,活塞上升时,下腔的油量不足。产生负压使底阀座上的回油阀座l9 上升,离开底阀座 20,油从储油缸通过回油阀座l9 与底阀座20 之间的开
6、口进入油缸24 下腔补充油量。当压缩运动时,活塞l3 向下移动,下部油压上升一部分油通过压缩阀16、17 压缩节流阀弹簧 14,使压缩阀 l6、17 向上移动,阀口打开,油通过阀口进入油缸上腔产生阻力 另一部分油通过底阀压缩阀23、压缩底阀座弹簧22,使底阀压缩阀23 下移,阀口打开,油通过阀口进入储油缸25 产生阻力。因此压缩阻力是由压缩阀16、17 和底阀压缩阀 23 共同产生的。GPV、GSV、GSH3 种减振器,其节流阀口采用柱面开口节流形式;而GYAW 和 GOH2 种减振器其节流阀口采用环状节流形式。四、油压减振器阻力特性(txng)分析 1液压减振器阻力特性的计算 液压减振器按照
7、液流方向可以分为油液单向循环流动和双向往复流动 2 种类型。它们的基本动作都是拉伸和压缩。当活塞杆相对于缸筒作拉伸和压缩运动时,内部的油液通过节流孔在流动的过程中产生阻力,耗散能量。2.拉伸和压缩时的阻力介绍 减振器拉伸时,阻力计算简图如图 1 所示。对活塞杆处液流截面和节流孔处截面利用利方程可推导更为明显这表明垂向减振器安装方式在减小车辆垂向振动的同时,更能有效地抑制车辆的横向振动。图 3-1 为安装横向减振器时车辆前后端平稳性指标的变化情况。从计算结果来看,安装横向减振器时,当阻尼系数小于 100kNsm 时,随着阻尼系数的增大,车辆前后端的横向平稳性指标显著下降,但垂向有所增大;当阻尼系
8、数达到 100kNsm 时,继续增加阻尼系数各观察点的平稳性指标变化不大。图 3-1 安装横向(hn xin)减振器时车辆平稳性(a)前端;(b)后端 表 1 是同时(tngsh)安装横向和垂向减振器的计算结果。当横向和垂向阻尼(zn)系数达到 50KN.S/M 时,车辆的横向(hn xin)和垂向平稳性指标同时明显下降。表 3-1 同时安装横向和垂向减振器时平稳性指标计算结果 在车辆之间安装适当的横向和垂向减振器可明显减小由线路不平顺随机激扰所引起的列车振动响应。不管是垂向还是横向减振器都是在抑制车辆的横向振动方面更有效果。当横向和垂向减振器同时安装时,垂向振动也可以得到较好的抑制。出拉伸阻
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 液压 减震器 发展 工作 原理 14 201
限制150内