艺术生高考数学专题讲义:考点34空间直线、平面平行的判定及其性质408.pdf
《艺术生高考数学专题讲义:考点34空间直线、平面平行的判定及其性质408.pdf》由会员分享,可在线阅读,更多相关《艺术生高考数学专题讲义:考点34空间直线、平面平行的判定及其性质408.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 考点三十四 空间直线、平面平行的判定及其性质 知识梳理 1直线与平面平行的定义 直线与平面没有公共点,叫做直线与平面平行 2平面与平面平行的定义 如果两个平面没有公共点,叫做两个平面平行 3直线与平面平行 判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 简称:线线平行,则线面平行 符号语言:a,b ab,错误!未定义书签。a.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行简称:线面平行,则线线平行 符号语言:aab错误!未定义书签。ab.4平面与平面平行 判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行简称:线面
2、平行,则面面平行 符号语言:a,babPa,b.性质定理:自然语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行简称:面面平行,则线线平行 符号语言:ab ab.5平行问题的转化关系 典例剖析 题型一 平行关系命题判定问题 例 1 空间中,下列命题正确的是_(填序号)若 a,ba,则 b 若 a,b,a,b,则 若,b,则 b 若,a,则 a 答案 解析 对于,b 可以在 内,错;对于,当 a,b 相交时才能有,错;对于,b 可能在 内,错;由面面平行的性质知,正确 变式训练 对于平面 和共面的直线 m,n,下列命题是真命题的是_(填序号)若 m,n 与 所成的角相等,则 mn 若
3、 m,n,则 mn 若 m,mn,则 n 若 m,n,则 mn 答案 解析 由 m,n 可知 m 与 n 不相交,又 m 与 n 共面,故 mn.解题要点 解决这类命题判定问题,一是对平行的判定定理、性质定理准确记忆并理解,二是可以借助图形分析 在作图时,一般是先作出平面,然后借助平面来考察其他的位置关系 题型二 线面平行的判定和性质 例 2 如图,在四棱锥 PABCD 中,底面 ABCD 是正方形,E、F 分别为 PC、BD 的中点 求证:EF平面 PAD.解析 证明:连接 AC,ACBDF.ABCD 为正方形,F 为 AC 中点,E 为 PC 中点,在CPA 中,EFPA.而 PA平面 P
4、AD,EF平面 PAD.EF平面 PAD.变式训练 在空间四边形 ABCD 中,E、F 分别为 AB、AD 上的点,且 AEEBAFFD14,又 H、G 分别为 BC、CD 的中点,则_(填序号)BD平面 EFG,且四边形 EFGH 是平行四边形 EF平面 BCD,且四边形 EFGH 是梯形 HG平面 ABD,且四边形 EFGH 是平行四边形 EH平面 ADC,且四边形 EFGH 是梯形 答案 解析 如图,由题意,EFBD,且 EF15BD.HGBD,且 HG12BD.EFHG,且 EFHG.四边形 EFGH 是梯形 又 EF平面 BCD,而 EH 与平面 ADC 不平行故选.解题要点 对平行
5、问题,应善于根据题意进行转化,要证线面平行,则一般需寻找线线平行。判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a,b,aba);(3)利用面面平行的性质定理(,aa);(4)利用面面平行的性质(,a,aa)题型三 面面平行的判定和性质 例 3 如图,在正方体 ABCDA1B1C1D1中,S 是 B1D1的中点,E、F、G 分别是 BC、DC、SC 的中点,求证:(1)直线 EG平面 BDD1B1;(2)平面 EFG平面 BDD1B1.证明(1)如图,连接 SB,E、G 分别是 BC、SC 的中点,EGSB.又SB平面 BDD1B1,EG平面
6、 BDD1B1,直线 EG平面 BDD1B1.(2)连接 SD,F、G 分别是 DC、SC 的中点,FGSD.又SD平面 BDD1B1,FG平面 BDD1B1,FG平面 BDD1B1,由(1)知,EG平面 BDD1B1,且 EG平面 EFG,FG平面 EFG,EGFGG,平面 EFG平面 BDD1B1.变式训练 如图所示,在直四棱柱 ABCDA1B1C1D1中,底面是正方形,E,F,G 分别是棱 B1B,D1D,DA 的中点求证:平面 AD1E平面 BGF.解析 E,F 分别是 B1B 和 D1D 的中点,D1F 綊 BE,四边形 BED1F 是平行四边形,D1EBF.又D1E平面 BGF,B
7、F平面 BGF,D1E平面 BGF.FG 是DAD1的中位线,FGAD1.又 AD1平面 BGF,FG平面 BGF,AD1平面 BGF.又AD1D1ED1,平面 AD1E平面 BGF.解题要点 证明面面平行同样需要在“线线平行”、“线面平行”、“面面平行”间相互转化一般来说,证明面面平行的常见方法是:面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;利用垂直于同一条直线的两个平面平行;两个平面同时平行于第三个平面,那么这两个平面平行 当堂练习 1能够判断两个平面,平行的条件是_(填序号)平面,都和第三个平面相交,且交线平行 夹在两个平面间的线段相等 平面
8、内的无数条直线与平面 无公共点 平面 内的所有的点到平面 的距离都相等 答案 解析 平面 内的所有的点到平面 的距离都相等说明平面、无公共点 2下列说法中正确的个数是_ 若直线 ab,b 平面,则有 a;若直线 a,b,则有 ab;若直线 ab,直线 a,则 b;若直线 a,b,则 ab 答案 0 解析 中可能 a 或 a,a 与 b 可能异面,中 b 可能在平面 内,a 与 b 可能相交、平行或异面 3.给出下列关于互不相同的直线 l、m、n 和平面、的三个命题:若 l 与 m 为异面直线,l,m,则;若,l,m,则 lm;若 l,m,n,l,则 mn.其中真命题的个数为_ 答案 1 解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 艺术 高考 数学 专题 讲义 考点 34 空间 直线 平面 平行 判定 及其 性质 408
限制150内