《ARCH模型在金融数据中应用.pdf》由会员分享,可在线阅读,更多相关《ARCH模型在金融数据中应用.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.实验七(G)ARCH 模型在金融数据中的应用 一、实验目的 理解自回归异方差(ARCH)模型的概念及建立的必要性和适用的场合。了解(G)ARCH 模型的各种不同类型,如 GARCH-M 模型(GARCH in mean),EGARCH 模型(Exponential GARCH)和 TARCH 模型(又称 GJR)。掌握对(G)ARCH 模型的识别、估计及如何运用 Eviews 软件在实证研究中实现。二、基本概念 p 阶自回归条件异方程 ARCH(p)模型,其定义由均值方程(7.1)和条件方程方程(7.2)给出:tttyx (7.1)222101122var(|).tttttptphaaaa
2、(7.2)其中,1t 表示 t-1 时刻所有可得信息的集合,th为条件方差。方程(7.2)表示误差项t的方差 th由两部分组成:一个常数项和前 p 个时刻关于变化量的信息,用前 p 个时刻的残差平方表示(ARCH 项)。广义自回归条件异方差 GARCH(p,q)模型可表示为:tttyx (7.3)22101111var(|).ttttptptqt qhaaahh (7.4)三、实验内容及要求 1、实验内容:以上证指数和深证成份指数为研究对象,选取 1997 年 1 月 2 日2002 年 12 月 31 日共6 年每个交易日上证指数和深证成份指数的收盘价为样本,完成以下实验步骤:(一)沪深股市
3、收益率的波动性研究(二)股市收益波动非对称性的研究(三)沪深股市波动溢出效应的研究 2、实验要求:(1)深刻理解本章的概念;(2)对实验步骤中提出的问题进行思考;(3)熟练掌握实验的操作步骤,并得到有关结果。四、实验指导(一)沪深股市收益率的波动性研究 1、描述性统计(1)导入数据,建立工作组 打开 Eviews 软件,选择“File”菜单中的“New Workfile”选项,在“Work”框中选择“undated or irregular”,在“Start observation”和“End observation”框中分别输入 1 和 1444,单击“OK”。.选择“File”菜单中的“I
4、mport-Read Text-Lotus-Excel”选项,找到要导入的名为 EX6.4.xls的 Excel 文档完成数据导入。(2)生成收益率的数据列 在 Eviews 窗口主菜单栏下的命令窗口中键入如下命令:genr rh=log(sh/sh(-1),回车后即形成沪市收益率的数据序列 rh,同样的方法可得深市收益数剧序列 rz。(3)观察收益率的描述性统计量 双击选取“rh”数据序列,在新出现的窗口中点击“View”“Descriptive Statistics”“Histogram and Stats”,则可得沪市收益率 rh 的描述性统计量,如图 71 所示:图 71 沪市收益率
5、rh 的描述性统计量 同样的步骤可得深市收益率 rz 的描述性统计量。观察这些数据,我们可以发现:样本期内沪市收益率均值为 0.027%,标准差为 1.63%,偏度为-0.146,左偏峰度为 9.07,远高于正态分布的峰度值 3,说明收益率 r t具有尖峰和厚尾特征。JB 正态性检验也证实了这点,统计量为2232,说明在极小水平下,收益率r t显著异于正态分布;深市收益率均值为-0.012%,标准差为 1.80%,偏度为-0.027,左偏峰度为 8.172,收益率 r t同样具有尖峰、厚尾特征。深市收益率的标准差大于沪市,说明深圳股市的波动更大。2、平稳性检验 再次双击选取 rh 序列,点击“
6、View”“Unit Root Test”,出现如图 72 所示窗口:.图 7-2 单位根检验 对该序列进行 ADF 单位根检验,选择滞后 4 阶,带截距项而无趋势项,所以采用窗口的默认选项,得到如图 73 所示结果:图 7-3 rh ADF 检验结果 同样对 rz 做单位根检验后,得到如图 74 所示结果:.图 74 rz ADF 检验结果 在 1%的显著水平下,两市的收益率 r t都拒绝随机游走的假设,说明是平稳的时间序列数据。这个结果与国外学者对发达成熟市场波动性的研究一致:Pagan(1996)和Bollerslev(1994)指出:金融资产的价格一般是非平稳的,经常有一个单位根(随机
7、游走),而收益率序列通常是平稳的。3、均值方程的确定及残差序列自相关检验 通过对收益率的自相关检验,我们发现两市的收益率都与其滞后 15 阶存在显著的自相关,因此对两市收益率 r t的均值方程都采用如下形式:15tttrcar (7.5)(1)对收益率做自回归 在 Eviws 主菜单中选择“Quick”“Estimation Equation”,出现如图 75 所示窗口:.图 7-5 对收益率 rh 做自回归 在“Method”中选择 LS(即普通最小二乘法),然后在“Estimation settings”上方空白处输入图 75 所示变量,单击“OK”,则出现图 7-6 所示结果:图 7-6
8、 收益率 rh 回归结果 (2)用 Ljung-Box Q 统计量对均值方程拟和后的残差及残差平方做自相关检验:点击“View”“Residual Test”“Correlogram-Q-statistics”,选择 10 阶滞后,则可得沪市收益率 rh 残差项的自相关系数 acf 值和 pacf 值,如图 77 所示:.图 7-7 沪市收益率 rh 残差项的自相关系数 acf 值和 pacf 值 点击“View”“Residual Test”“Correlogram Squared Residuals”,选择 10阶滞后,则可得沪市收益率 rh 残差平方的自相关系数 acf 值和 pacf
9、值,如图 78 所示:图 7-8 沪市收益率 rh 残差平方的自相关系数 acf 值和 pacf 值.采用同样的方法,可得深市收益率 rz 的回归方程及残差、残差平方的 acf 值和 pacf值。结果表明两市的残差不存在显著的自相关,而残差平方有显著的自相关。(3)对残差平方做线性图。对 rh 进行回归后在命令栏输入命令:genr res1=resid2,得到 rh 残差平方序列 res1,用同样的方法得到rz残差平方序列res2。双击选取序列res1,在新出现的窗口中选择“View”“Line Graph”,得到 res1 的线性图如图 7-9 所示 图 7-9 rh 残差平方线状图 同理得
10、到 rz 残差平方线状图:图 7-10 rz 残差平方线状图.可见2t的波动具有明显的时间可变性(time varying)和集簇性(clustering),适合用GARCH 类模型来建模。(4)对残差进行 ARCH-LM Test 依照步骤(1),再对 rh 做一次滞后 15 阶的回归,在出现的“Equation”窗口中点击“View”“Residual Test”“ARCH LM Test”,选择一阶滞后,得到如图 711 所示结果:图 7-11 rh ARCH-LM Test 对 rz 方程回归后的残差项同样可做 ARCH-LM Test,结果表明残差中 ARCH 效应是很显著的。4、G
11、ARCH 类模型建模(1)GARCH(1,1)模型估计结果 点击“Quick”“Estimate Equation”,在出现的窗口中“Method”选项选择“ARCH”,可以得到如图 712 所示的对话框。在这个对话框中要求用户输入建立 GARCH 类模型相关的参数:“Mean Equation Specification”栏需要填入均值方差的形式;“ARCH-M term”栏需要选择 ARCH-M 项的形式,包括方差、标准差和不采用三种;“ARCH Specification”栏需要选择 ARCH 和 GARCH项的阶数,以及估计方法包括 GARCH、TARCH 和 EGARCH 等等;“V
12、ariance Regressors”栏需要填如结构方差的形式,由于 Eviews 默认条件方差方程中包含常数项,因此在此栏中不必要填入“C”。我们现在要用 GARCH(1,1)模型建模,以沪市为例,只需要在“Mean Equation Specification”栏输入均值方差“RH C RH(-15)”,其他选择默认即可,得到如图 7.13 和图 714 所示的结果。图 712 Equation Specification 窗口 图 7-13 沪市收益率 GARCH(1,1)模型估计结果 .图 7-14 深市收益率 GARCH(1,1)模型估计结果 可见,沪深股市收益率条件方差方程中 AR
13、CH 项和 GARCH 项都是高度显著的,表明收益率序列具有显著的波动集簇性。沪市中 ARCH 项和 GARCH 项系数之和为 0.98,深市也为0.98,均小于 1。因此 GARCH(1,1)过程是平稳的,其条件方差表现出均值回复(MEAN-REVERSION),即过去的波动对未来的影响是逐渐衰减。(2)GARCH-M(1,1)估计结果 依照前面的步骤只要在“ARCH-M term”栏选择方程作为 ARCH-M 项的形式,即可得到 GARCH-M(1,1)模型的估计结果,如图 715 和图 716 所示。图 715 沪市收益率 GARCH-M(1,1)模型估计结果.图 7-16 深市收益率
14、GARCH-M(1,1)模型估计结果 可见,沪深两市均值方程中条件方差项 GARCH 的系数估计分别为 5.937671 和5.162608,而且都是显著的。这反映了收益与风险的正相关关系,说明收益有正的风险溢价。而且上海股市的风险溢价要高于深圳。这说明上海股市的投资者更加的厌恶风险,要求更高的风险补偿。(二)股市收益波动非对称性的研究 1、TARCH 模型估计结果 在图 7-12 的“ARCH Specification”下拉列表中选择“EGARCH”,即可得到 rh、rz的 TARCH 模型估计结果,如图 7-17 和图 7-18 所示。图 717 沪市收益率 TARCHT(1,1)模型估
15、计结果.图 7-18 深市收益率 TARCH(1,1)模型估计结果 在 TARCH 中,211ttd项的系数估计值都大于 0,而且都是显著的。这说明沪深股市中坏消息引起的波动比同等大小的好消息引起的波动要大,沪深股市都存在杠杆效应。2、EARCH 模型估计结果 在图 7-12 的“ARCH Specification”下拉列表中选择“EGARCH”,则可得到 rh、rz的 EGARCH 模型估计结果,分别如下图 7-19 和图 7-20 所示。图 719 沪市收益率 EGARCH(1,1)模型估计结果.图 7-20 深市收益率 EGARCH(1,1)模型估计结果 在 EGARCH 中,11tt
16、h项的系数估计值都小于零。在估计结果中沪市为-0.051846,深市为-0.032059,而且都是显著的,这也说明了沪深股市中都存在杠杆效应。(三)沪深股市波动溢出效应的研究 当某个资本市场出现大幅波动的时候,就会引起投资者在另外的资本市场的投资行为的改变,将这种波动传递到其他的资本市场。这就是所谓的“溢出效应”。例如 9.11 恐怖袭击后,美国股市的大震荡引起欧洲及亚洲股市中投资者的恐慌,从而引发了当地资本市场的大动荡。接下来我们将检验深沪两市之间的波动是否存在“溢出效应”。1、检验两市波动的因果性(1)提取条件方差 重复前面 GARCH-M 模型建模的步骤,选择主菜单栏“Procs”下的“
17、Make GARCH Variance Series”,得到 rh 回归方程残差项的条件方差数据序列 GARCH01,同样的步骤 rz 回归方程残差项的条件方差数据序列 GARCH02。(2)检验两市波动的因果性 在“Workfile”中同时选中“GARCH01”和“GARCH02”,右击,选择“Open”“As Group”,在弹出的窗口中点击“View”“Granger Causality”,并选择滞后阶数 5,得到如图 721 所示结果。.图 7-21 Granger 因果检验 可见,我们不能拒绝原假设:上海的波动不能因果深圳的波动。但是可以拒绝原假设:深圳的波动不能因果上海的波动。这初
18、步证明沪深股市的波动之间存在溢出效应,且是不对称,单向的,表明是由于深圳市场的波动导致了上海市场的波动,而不是相反。2、修正 GARCH-M 模型 在沪市 GARCH-M 模型的条件方差方程中加入深市波动的滞后项,应该会改善估计结果。在“Equation Specification”窗口中,按图 7-22 示输入如下变量,即在模型的条件方差方程中加入了深市波动的滞后项。图 7-22 修正 GARCH-M 模型.点击“OK”,则得到加入滞后项 GARCH02 后沪市 GARCH-M 模型重新估计的结果,如图 7 23 所示。图 7-23 沪市 GARCH-M(加入滞后项 GARCH02)的估计结
19、果 与前面图 715 结果比较可见,加入滞后项后,沪市 GARCH-M 模型中均值方程的GARCH 项估计值变大,而且更加显著,并且估计的标准误差缩小了。这说明在条件方差方程中加入深市波动的滞后项是恰当的。此时沪市收益率的 GARCH-M 效应更加明显了,风险(波动性)与收益之间的正相关关系更加显著。我们运用 GARCH 类模型,对沪深股市收益率的波动性、波动的非对称性,以及波动之间的溢出效应做了全面的分析。通过分析,基本可以得出了以下结论:第一,沪深股市收益率都存在明显的 GARCH 效应。第二,沪深股市都存在明显的 GARCH-M 效应,而且沪市的正向风险溢价要高于深市,反映了上海股市的投资者比深圳的投资者更加厌恶风险。第三,沪深股市都存在明显的杠杆效应,反映了在我国股票市场上坏消息引起的波动要大于好消息引起的波动。第四,沪深股市之间波动存在溢出效应,而且是单向的,深市的波动将引起沪市的波动,加入深市波动的模型将有助于提高沪市风险溢价的水平。
限制150内