第六章液相烧结270.pdf
《第六章液相烧结270.pdf》由会员分享,可在线阅读,更多相关《第六章液相烧结270.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页 第六章 液相烧结 Liquid phase sintering 1 概述 首先在陶瓷领域开展起来:最早在 7000 年前,古人用粘土矿物烧制建筑用砖块 瓷器,耐火材料 当今的高技术陶瓷广泛采用液相烧结技术制造耐磨陶瓷,压电陶瓷,铁氧体,电子基板及高温构造陶瓷 液相烧结在金属加工技术中的应用 大约在 400 年前,古英克斯人加工昂贵的金铂首饰和工艺品 现代液相烧结技术的开展 开发液相烧结技术是由爱迪生创造的电灯丝W所驱动 3 阶段 a.起初采用铸造 WC,由于在冷却过程中存在分解成脆性 W2C,WC 和石墨相 b.采用 WC 粉末压制在低于 2600 度烧结,制品仍表现为本质脆性,无
2、工业应用价值 c.一战前夕,德国化学家 KARL,1922 年创造了粘结炭化物拉丝模,并于 1923 年申请了创造专利 标志着现代液相烧结技术成功地应用金属工业中 二十世纪二十年代初硬质合金工具材料及稍后的青铜含油轴承的成第 2 页 功的开发 三十年代初期二战前奏,高比重合金的开发与应用为液相烧结奠定了理论根底 液相烧结技术开展迅速 用以制造高性能的 P/M 材料 如电接触材料、轴瓦材料Al-Pb、工具钢、超合金、金刚石-金属复合材料、磁性材料、汽车零部件、航天材料、高温构造陶瓷、电子焊料soldering paste等 2 液相烧结技术的优、缺点 优点:1)加快烧结速度:a 液相的形成加快了
3、原子迁移速度 b 在无外压的情况下,毛细管力的作用加快坯体的收缩 c 液相的存在降低颗粒间的摩擦 有利于颗粒重排列 2)晶粒尺寸可以通过调节液相烧结工艺参数加以控制,便于优化显微构造和性能 3)可制得全致密的 P/M 材料或制品,延伸率高 4)粉末颗粒的尖角处优先溶于液相,易于获得有效的颗粒间填充 缺乏之处:变形distortion,slumping 当烧结坯体液相数量过大或混合粉的粒度、混合不均匀时,易出现变第 3 页 形 收缩大,尺寸精度控制困难 3 液相烧结liquid phase sintering的定义和分类:定义:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程 或烧结
4、过程中出现液相的粉末烧结过程统称为液相烧结 分类 1.瞬时液相烧结(transient liquid phase sintering)在烧结中、初期存在液相,后期液相消失的烧结过程 特点:烧结中初期为液相烧结,后期为固相烧结 体 系:Cu-Sn,Cu-Pb,Ag-Hg,Ag-Ni,Fe-Fe3P,Fe-Cu3P,Fe-Ni-Al、Fe-Cu(10%)等 3 熔浸(infiltration)多孔骨架的固相烧结和低熔点金属渗入骨架后的液相烧结过程 前期为固相烧结,后期为液相烧结 全致密假合金如 W(Mo)-CuAg等复合材料 4.超固相线液相烧结(supersolidius liquid phas
5、e sintering):液相在粉末颗粒内形成,是一种在微区范围内较普通液相烧结更为均匀的烧结过程 高碳铁合金,工具钢,粉末超合金,纳米晶复合 WC-Co 粉末等的烧结 2 液相烧结的条件 液相烧结得以进展的前提 否那么,产生反烧结现象 即烧结体系应满足 S=SL+LCOS 为润湿角 当=0,液相充分润湿固相颗粒 最理想的液相烧结条件 当90O,液相被推出烧结体,发生反烧结现象 在那些烧结气氛与固相或液相组分间形成稳定氧化物体系易出现 如 Al-Pb,Cu-Al,Cu-Sn 等 第 5 页 当 0900,这是普通的液相烧结情况,烧结效果一般 可参加合金元素改善液相对固相颗粒的润湿性,促进液相烧
6、结过程 润湿角的影响因素:,主要降低SL 2.润湿是一动态平衡过程,烧结时间适当延长,;3.添加剂:导致 添加剂能促进固相与液相间的物理溶解和轻微的化学反响 TiC-Ni,添加 Mo W-Cu,添加 Ni,Co,Fe 固相颗粒的粗糙度,固-气界面能 液固润湿过程易于进展 液相或固相氧化膜的形成导致润湿性下降 成形剂分解后的残碳 其结果是:1)有限的溶解可改善润湿性 2)增加液相的数量即体积分数,促进致密化 3)颗粒外表突出部位的化学位较高产生优先溶解,通过扩散和液相流动在颗粒凹陷处析出,改善固相晶粒的形貌和减小颗粒重排的阻力 4)马栾哥尼效应溶质浓度的变化导致液体外表张力梯度,产生液相流动有利
7、于液相迁移 5)增加了固相物质迁移通道,加速烧结 但过高的溶解度导致烧结体的变形和为晶粒异常长大提供条件 第 6 页 另外,固相在液相中的过度溶解导致液相粘度增加,降低液相的流动性 液相在固相中固溶,造成液相数量减小 液相数量的增加 有利于液相充分而均匀地包覆固相颗粒 减小固相颗粒间的接触时机 为颗粒重排列提供足够的空间和降低重排列阻力 对致密化有利 但过大的液相数量造成烧结体的刚度降低 形状保持性shape retention下降 一般将液相数量控制在 35%以内 对于那些在液相冷却后形成粗大针状组织的合金体系如 Fe-Al 一般不采用液相烧结 假设必须采用液相烧结,那么严格控制液相的数量及
8、其分布 3 液相烧结阶段和烧结机构(以 W-Ni-Cu 合金为例)当烧结温度高于液相组分的熔点或共晶点时,液相形成 在毛细力的作用下,液相发生流动并填充孔隙空间 1.液 相 的 形 成 与 颗 粒 重 排(formation and particle rearrangement):同时,毛细力作用也导致固相颗粒受力不平衡 使颗粒产生移动和转动,调整位置 使压制状态的固相颗粒的相对位置发生变化,到达最正确的填充状第 7 页 态严密堆积 烧结坯发生充分致密化 液相流动与颗粒重排 为液相烧结的主导致密化机理 液相的数量主要取决于合金成分和烧结温度尤其是有限互溶体系 对于组元间存在固态下互扩散现象的液
9、相烧结体系如 Fe-Cu,液相数量与升温速度有关 速度愈快,低熔组分来不及向固相扩散,液相数量相对增加 致密化速度可下述方程表示:d(L/Lo)/dt=P.w/(2Rc.)P-毛细压力;P=2LCOS/d W-液膜厚度;-液相的粘度;Rc-有效毛细管半径,与颗粒尺寸成正比 细的固相颗粒有利于提高致密化速度 d-固相颗粒的别离度,与液膜厚度相当 2.溶解-再析出阶段dissolution-reprecipitation:固相在液相中具有一定溶解度的 LPS 体系 化学位差异,化学位高的部位将发生优先溶解并在附近的液相中形成浓度梯度 发生固相原子等在液相中的扩散和宏观的马孪哥尼流动,在化学位低的部
10、位析出 第 8 页 化学位高的区域 颗粒突起或尖角处,细颗粒 发生细颗粒和颗粒尖角处的优先溶解 化学位较低的部位 颗粒的凹陷处和大颗粒外表 溶解在液相中固相组分的原子在这些部位析出 其结果是 固相颗粒外表光滑化和球化 降低颗粒重排列阻力 有利于颗粒间的重排 进一步提高致密化效果 小颗粒的溶解速度为 dr/dt=2DCLV(r-R)/(kTr2R)R、r 分别为大小晶粒的半径 固相组分的原子体积 D 固相组分在液相中的扩散系数 C 固相组分在液相中的平衡溶解度 这一阶段的致密化可表示为:(L/Lo)3=C1.t 扩散控制过程 (L/Lo)2=C2.t 溶解控制过程 其中 C1,C2 为与烧结体系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六 章液相 烧结 270
限制150内