人教版七年级数学知识点汇总.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版七年级数学知识点汇总.pdf》由会员分享,可在线阅读,更多相关《人教版七年级数学知识点汇总.pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版七年级数学知识点 第一章 有理数 正数和负数 把 0 以外的数分为正数和负数;0 是正数与负数的分界;负数:比 0 小的数 正数:比 0 大的数 0 既不是正数,也不是负数 有理数 1.2.1 有理数 正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数;所有正整数组成正整数集合,所有负整数组成负整数集合;正整数,0,负整数统称整数;1.2.2 数轴 具有原点,正方向,单位长度的直线叫数轴;1.2.3 相反数 只有符号不同的数叫相反数;0 的相反数是 0 正数的相反数是负数 负数的相反数是正数 1.2.4 绝对值 绝对值 a 性质:正数的绝对值是它的本身 负数的绝对
2、值的它的相反数 0 的绝对值的 0 1.2.5 数的大小比较 数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数;正数大于 0,0 大于负数,正数大于负数;两个负数,绝对值大的反而小;有理数的加减法 1.3.1 有理数的加法 同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得 0;一个数同 0 相加,仍得这个数;加法交换律:两个数相加,交换加数的位置,和不变;a+b=b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;
3、a+b+c=a+c+b 1.3.2 有理数的减法 减去一个数,等于加这个数的相反数;a-b=a+-b 有理数的乘除法 1.4.1 有理数的乘法 两数相乘,同号得正,异号的负,并把绝对值相乘;任何数同 0 相乘,都得 0;乘积是 1 的两个数互为倒数;几个不是 0 的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数;乘法交换律:两个数相乘,交换因数的位置,积相等;ab=ba 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等;abc=acb 乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加;ab+c=ab+ac 1.4.2
4、有理数的除法 除以一个不等 0 的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0 除以任何一个不等于 0 的数,都得 0 乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果;有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照先乘除,后加减的顺序进行;有理数的乘方 1.5.1 乘方 求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂;在 中,a 叫做底数,n 叫做指数;负数的奇次幂是负数,负数的偶次幂的正数;正数的任何次幂都是正数,0 的任何正整数次幂都是 0;做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级
5、运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行;1.5.2 科学记数法 把一个大于 10 的数表示成 的形式其中 a 是整数数位只有一位的数,n 是正整数,使用的是科学记数法;1.5.3 近似数 一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数;近似数与准确数的接近程度,可以用精确度表示;从一个数的左边第一个非 0 数字起,到末位数字止,所有的数字都是这个数的有效数字;第二章 整式的加减 整式 单项式:表示数或字母积的式子 单项式的系数:单项式中的数字因数 单项式的次数:一个单项式中,所有字母的指数和 几个单项式的和叫做多项式;每个单项式叫做多
6、项式的项,不含字母的项叫做常数项;多项式里次数最高项的次数,叫做这个多项式的次数;单项式与多项式统称整式;整式的加减 同类项:所含字母相同,而且相同字母的次数相同的单项式;把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项;第三章 一元一次方程 从算式到方程 3.1.1 一元一次方程 方程:含有未知数的等式 一元一次方程:只含有一个未
7、知数,而且未知数的次数是 1 的方程;方程的解:使方程中等号左右两边相等的未知数的值 求方程解的过程叫做解方程;分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法;3.1.2 等式的性质 等式的性质 1:等式两边加或减同一个数或式子,结果仍相等;等式的性质 2:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等;解一元一次方程合并同类项与移项 把等式一边的某项变号后移到另一边,叫做移项;解一元一次方程二 去括号与去分母 一般步骤:1.去分母 2.去括号 3.移项 4.合并同类项 5.系数化为一 实际问题与一元一次方程 利用方程不仅能求具体数值,而且可以
8、进行推理判断;第四章 图形认识初步 多姿多彩的图形 4.1.1 几何图形 把实物中抽象出的各种图形统称为几何图形;几何图形的各部分不都在同一平面内,是立体图形;有些几何图形的各部分都在同一平面内,它们是平面图形;常常用从不同方向看到的平面图形来表示立体图形;主视图,俯视图,左视图;有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图;4.1.2 点,线,面,体 几何体也简称体;包围着体的是面;面有平的面和曲的面两种;面和面相交的地方形成线;线有直线和曲线 线和线相交的地方是点;点无大小之分 点动成线,线动成面,面动成体;几何图形都
9、是由点,线,面,体组成的,点是构成图形的基本元素;点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界;线段的比较:1.目测法 2.叠合法 3.度量法 直线,射线,线 经过两点有一条直线,并且只有一条直线;两点确定一条直线;当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点;射线和线段都是直线的一部分;把线段分成相等的两部分的点叫做中点;两点的所有连线中,线段最短;两点之间,线段最短 连接两点间的线段的长度,叫做这两点的距离;角 4.3.1 角 角也是一种基本的几何图形;有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射
10、线是角的两条边;角可以看作由一条射线绕着它的端点旋转而形成的图形;把一个周角 360 等分,每一分就是 1 度的角,记作 1;把 1 度的角 60 等分,每一份叫做 1分的角,记作 1;把 1 分的角 60 等分,每一份叫做 1 秒的角,记作 1;角的度,分,秒是 60 进制的,这和计量时间的时,分,秒是一样的;以度,分,秒为单位的角的度量制,叫做角度制;4.3.2 角的比较与运算 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线;4.3.3 余角和补角 两个角的和等于 90直角,就说这两个角互为余角,即其中每一个角是另一个角的余角;两个角的和等于 180平角,就说这两个
11、角互为补角,即其中一个角是另一个角的补角;等角的补角相等;等角的余角相等;第五章 相交线与平行线 概念定义及性质公理:1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行;2、互为邻补角:1 定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角;2 性质:从位置看:互为邻角;从数量看:互为补角;3、互为对顶角:1 定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角;2 性质:对顶角相等 4、垂直:1 定义:垂直是相交的一种特殊情形;当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相
12、垂直;它们交点叫做垂足;其中的一条直线叫做另一条直线的垂线;2 性质:过一点有且只有一条直线和已知直线垂直;3 表示方法:用符号“”表示垂直;5、任何一个“定义”既可以做判定,又可以做性质;6、垂线是一条直线,垂线段是垂线的一部分;7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短简单说成:垂线段最短;8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度;两点间的距离:连接两点间的线段的长度;“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况;9、内错角的定义:两个角都在截线的两侧,都在被截直线之间;这样的两个
13、角叫做内错角;10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方;这样的两个角叫做同位角;11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间;这样的两个角叫做同旁内角;12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线;13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线;14、平行线:1 定义:在平面内不相交的两条直线,叫做平行线;2 表示方法:用符号“”表示平行;3 公理:经过直线外一点,有且只有一条直线与已知直线平行这个公理说明了平行线的存在性和唯一性;4 推论:如果两条直线都与第三条直线平行,那
14、么这两条直线也互相平行;5 判定 1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行简单说成:同位角相等,两直线平行;判定 2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行简单说成:内错角相等,两直线平行;判定 3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行简单说成:同旁内角相等,两直线平行;判定 4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行;6 性质 1:如果两条平行直线被第三条直线所截,那么同位角相等简单说成:两直线平行,同位角相等;性质 2:如果两条平行直线被第三条直线所截,那么内错角相等简单说成:
15、两直线平行,内错角相等;性质 3:如果两条平行直线被第三条直线所截,那么同旁内角相等简单说成:两直线平行,同旁内角相等;15、命题 1 定义:表示判断一件事情的语句,叫做命题;2 分类:命题分为 真命题:正确的命题;假命题:错误的命题;3 组成:命题是由条件题设和结论两部分组成;条件题设是已知事项,结论是由已知事项推出的事项;4 定理:通过推理证实过的真命题叫做定理;定理也可以作为继续推理的依据;16、平移:1 定义:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移;2 性质 1:平移不改变图形的形状和大小,只改变图形的位置;性质 2:经过平移对应点所连的线段平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 知识点 汇总
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内