中考数学知识点总结圆(22大知识点+例题)新人教版(1).pdf
《中考数学知识点总结圆(22大知识点+例题)新人教版(1).pdf》由会员分享,可在线阅读,更多相关《中考数学知识点总结圆(22大知识点+例题)新人教版(1).pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 圆 知识点:一、圆 1、圆的有关性质 在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫圆,固定的端点 O 叫圆心,线段 OA 叫半径。由圆的意义可知:圆上各点到定点(圆心 O)的距离等于定长的点都在圆上。就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所
2、对的弧组成的圆形叫弓形。圆心相同,半径不相等的两个圆叫同心圆。能够重合的两个圆叫等圆。同圆或等圆的半径相等。在同圆或等圆中,能够互相重合的弧叫等弧。二、过三点的圆 l、过三点的圆 过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。2、反证法 反证法的三个步骤:假设命题的结论不成立;从这个假设出发,经过推理论证,得出矛盾;由矛盾得出假设不正确,从而肯定命题的结论正确。例如:求证三角形中最多只有一个角是钝角。证明:设有两个以上是钝角 则两个钝角之和180 与三角形内角和等于 180矛盾。不
3、可能有二个以上是钝角。即最多只能有一个是钝角。三、垂直于弦的直径 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推理 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。推理 2:圆两条平行弦所夹的弧相等。四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。2 实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。定理:在同圆或等圆中
4、,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。五、圆周角 顶点在圆上,并且两边都和圆相交的角叫圆周角。推理 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推理 2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。推理 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。六、圆的内接四边形 多边形的所有顶点都在同一个圆上,这个多
5、边形叫圆内接多边形,这个圆叫这个多边形的外接圆 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。例如图 61,连 EF 后,可得:DEFB DEFA180 AB18ry BCDA 七、直线和圆的位置关系 1、直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫圆的割线 直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫圆的切线,唯一的公共点叫切点。直线和圆没有公共点时,叫直线和圆相离。2、若圆的半径为 r,圆心到直线的距离为 d,则:直线和圆相交dr;直线和圆相切dr;直线和圆相离dr;直线和圆相交dr 例如:图 62 中,直线与圆 O 相割,有:rd 图 63 中,直线与
6、圆 O 相切,rd 图 64 中,直线与圆 O 相离,rd 八、切线的判定和性质 切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线的性质:圆的切线垂直于经过切点的半径 推理 1:经过圆心且垂直干切线的直线必经过切点。推理 2:经过切点且垂直于切线的直线必经过圆心。例如图 65 中,O 为圆心,AC 是切线,D 为切点。3 B90 则有 BC 是切线 OD 是半径 ODAC 九、三角形的内切圆 要求会作图,使它和己知三角形的各边都相切 分角线上的点到角的两边距离相等。两条分角线的交点就是圆心。这样作出的圆是三角形的内切圆,其圆心叫内心,三角形叫圆的外切三角形。和多边形各边都相切
7、的圆叫多边形的内切圆,多边形叫圆的外切多边形。十、切线长定理 经过圆外一点可作圆的两条切线。在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫这点到圆的切线长。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。圆心和这一点的连线平分两条切线的夹角,如图 66 B、C 为切点,O 为圆心。ABAC,12 十一、弦切角 顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角。弦切角定理弦切角等于它所央的弧对的圆周角。推理如果两个弦切角所央的弧相等,那么这两个弦切角也相等。例如图 67,AB 为切线,则有:CBAE,BAED CD 十二、和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被交
8、点分成的两条线段长的积相等。推理:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。推理:从圆外一点引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等,如图 68,若 F 为切点 则有:AF2=AHAC,AGABAF2 EMMD=BMMG CNNH=DNNE 十三、圆和圆的位置关系如图 69 若连心线长为 d,两圆的半径分别为R,r,则:1、两圆外离d Rr;2、两圆外切d=Rr;3、两圆相交RrdRr(Rr)4、两圆内切d=Rr;(Rr)5、两圆内含dRr。(Rr)定理相交两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 知识点 总结 22 例题 新人
限制150内