教育专题:教育专题:64《实数复习》.ppt
《教育专题:教育专题:64《实数复习》.ppt》由会员分享,可在线阅读,更多相关《教育专题:教育专题:64《实数复习》.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 新人教版七年级新人教版七年级 实数复习实数复习 1.1.课本、点睛练习册、试卷、好题本、课本、点睛练习册、试卷、好题本、练习本、红色圆珠笔练习本、红色圆珠笔 2.2.最重要的是激情和坚决清除懒散的决心!最重要的是激情和坚决清除懒散的决心!课前准备课前准备:迅速反应迅速反应 立即行动!立即行动!本章知识结本章知识结构图构图乘乘方方开开方方开平方开平方开立方开立方平方根平方根立方根立方根有理数有理数无理数无理数实数实数互为逆运算互为逆运算算术平方根算术平方根负的平方根负的平方根特殊:0的算术平方根是0。一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根算术平方根。a的
2、算术平方根记为 ,读作“根号a”,a叫做被开方数。a1.算术平方根的定义:算术平方根的定义:一般地,如果一个数的一般地,如果一个数的平方等于平方等于a a ,那,那么这个数就叫做么这个数就叫做a a 的的平方根平方根(或二次方(或二次方根)根)这这就是说,如果就是说,如果x x 2 2 =a a,那么,那么 x x 就叫做就叫做 a a 的平方根的平方根a a的平方根记为的平方根记为 a2.平方根的定义:平方根的定义:3.平方根的性质:平方根的性质:正数有正数有2个个平方根,它们平方根,它们互为相反数互为相反数;0的平方根是的平方根是0;负数负数没有平方根没有平方根。4.立方根的定义:立方根的
3、定义:一般地,如果一个数的立方等于一般地,如果一个数的立方等于a a,那,那么这个数就叫做么这个数就叫做a a的的立方根立方根,也叫做,也叫做a a的的三次方根三次方根记作记作 .其中其中a是被开方数,是根指数,符号是被开方数,是根指数,符号“”读做读做“三次根号三次根号”5.立方根的性质:立方根的性质:一个正数有一个正的立方根;一个正数有一个正的立方根;一个负数有一个负的立方根,一个负数有一个负的立方根,零的立方根是零。零的立方根是零。=区别区别你知道算术平方根、平方根、立方根联你知道算术平方根、平方根、立方根联系和区别吗?系和区别吗?算术平方根 平方根 立方根表示方法表示方法的取值的取值性
4、性质质开开方方正数正数0负数负数正数(一个)正数(一个)0没有没有互为相反数(两个)互为相反数(两个)0没有没有正数(一个)正数(一个)0负数(一个)负数(一个)求一个数的平方根求一个数的平方根的运算叫开平方的运算叫开平方求一个数的立方根求一个数的立方根的运算叫开立方的运算叫开立方是本身是本身0,100,1,-1无限不循环的小数无限不循环的小数 叫做无理数叫做无理数.有理数和无理数统称有理数和无理数统称实数实数.实实数数有理数有理数无理数无理数分数分数整数整数正整数正整数 0负整数负整数正分数正分数负分数负分数自然数自然数正无理数正无理数负无理数负无理数无限不循环小数无限不循环小数有限小数及无
5、限循环小数有限小数及无限循环小数一般有三种情况一般有三种情况把下列各数分别填入相应的集合内:把下列各数分别填入相应的集合内:把下列各数分别填入相应的集合内:把下列各数分别填入相应的集合内:(相邻两个(相邻两个3之间的之间的7的个数逐次加的个数逐次加1)有理数集合有理数集合 无理数集合无理数集合课堂检测课堂检测课堂检测课堂检测一、判断下列说法是否正确:一、判断下列说法是否正确:1.实数不是有理数就是无理数。实数不是有理数就是无理数。()2.无限小数都是无理数。无限小数都是无理数。()3.无理数都是无限小数。无理数都是无限小数。()4.带根号的数都是无理数。带根号的数都是无理数。()5.两个无理数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实数复习 教育 专题 64 实数 复习
限制150内