matlab在科学计算中的应用02.ppt
《matlab在科学计算中的应用02.ppt》由会员分享,可在线阅读,更多相关《matlab在科学计算中的应用02.ppt(86页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章 MATLAB 语言程序设计基础MATLAB 语言的简洁高效性MATLAB 语言的科学运算功能MATLAB 语言的绘图功能MATLAB 庞大的工具箱与模块集MATLAB 强大的动态系统仿真功能 MATLAB MATLAB 语言是当前国际上自动控制领域的首选语言是当前国际上自动控制领域的首选计算机语言,也是很多理工科专业最适合的计算机数学计算机语言,也是很多理工科专业最适合的计算机数学语言。通过学习可更深入理解和掌握数学问题的求解思语言。通过学习可更深入理解和掌握数学问题的求解思想,提高求解数学问题的能力,为今后其他专业课程的想,提高求解数学问题的能力,为今后其他专业课程的学习提供帮助。学
2、习提供帮助。MATLAB MATLAB语言的优势语言的优势:本章主要内容MATLAB 程序设计语言基础基本数学运算MATLAB语言流程控制MATLAB 函数的编写二维图形绘制三维图形绘制2.1 Matlab 的启动Windows Systems:u D双击桌面上的 MATLAB 图标 u 从“开始”中选择“MATLAB”启动程序打开Matlab的命令窗口。每个命令行提示符为.“help”的使用在命令行中键入 help matlab/general-General purpose commands.matlab/ops-Operators and special char.matlab/lang
3、-Programming language const.matlab/elmat-Elementary matrices and ma.matlab/elfun-Elementary math functions.matlab/specfun-Specialized math functions.或者点击命令窗口中的“help选项”2.2 MATLAB 程序设计语言基础MATLAB 语言的变量命名规则命名规则是:(1)变量名必须是不含空格的单个词;(2)变量名区分大小写;(3)变量名最多不超过19个字符;(4)变量名必须以字母打头,之后可以是 任意字母、数字或下划线,变量名中 不允许使用标点符
4、号例:NetCost,Left2Pay,x3,X3,z25c5 是允许的变量名;Net-Cost,2pay,%x,sign 是错误的变量名注意:不能使用Matlab保有的变量名,如pi,log等MATLAB 的保留常量数学运算符号及标点符号数学运算符号及标点符号Examples:2+3/4*5ans=5.7500Matlab 中公式计算顺序:1.quantities in brackets,2.powers 2+32(=2+9)=11,3.*/,working left to right(3*4/5=12/5),4.+-,working left to right(3+4-5=7-5),符号“
5、e”用与表示很大或很小的数:-1.3412e+03=-1.3412 103-1341.2 -1.3412e-01=-1.3412 10(-1)=-0.13412 format 命令控制输出结果的长度。format long,format short(e)(1)MATLAB的每条命令后,若为逗号或无逗号或无标点标点符号,则显示命令的结果;若命令后为分分号号,则禁止显示结果.(2)“%”后面所有文字为注释.(3)“.”表示续行.双精度数值变量IEEE标准,64位(占8字节),11指数位,53数值位和一个符号位 double()函数的转换其他数据类型uint8(),无符号8位整形数据类型,值域为0至
6、255,常用于图像表示和处理。(节省存储空间,提高处理速度)int8(),int16(),int32(),uint16(),uint32()数值型数据结构符号型,sym(A),常用于公式推导、解析解解法 符号变量声明 syms var_list var_props 例:syms a b real(注意变量中间用空格分隔)syms c positive 符号型数值可采用变精度函数求值(variable-precision arithmetic)vpa(A),或 vap(A,n)vpa(pi)ans=3.1415926535897932384626433832795 vpa(pi,60)ans=3
7、.14159265358979323846264338327950288419716939937510582097494符号型变量数据类型字符串型数据:用单引号括起来。多维数组:是矩阵的直接扩展,多个下标。单元数组:将不同类型数据集成到一个变量名下面,用表示;例:用Ai,j可表示单元数组A的第i行,第j列的内容。类与对象:允许用户自己编写包含各种复杂详细的变量,可以定义传递函数。MATLAB支持的其它数据结构直接赋值语句 赋值变量赋值表达式 例:a=pi2 a=9.8696例:表示矩阵 B=1+9i,2+8i,3+7j;4+6j 5+5i,6+4i;7+3i,8+2j 1iB=1.0000+9
8、.0000i 2.0000+8.0000i 3.0000+7.0000i 4.0000+6.0000i 5.0000+5.0000i 6.0000+4.0000i 7.0000+3.0000i 8.0000+2.0000i 0+1.0000i B=1+9i,2+8i,3+7j;4+6j 5+5i,6+4i;7+3i,8+2j 1i;%不显示结果,但赋值MATLAB 的基本语句结构函数调用语句返回变量列表函数名(输入变量列表)例:a,b,c=my_fun(d,e,f,c)冒号表达式 v=s1:s2:s3 该函数生成一个行向量v,其中s1是起始值,s2是步长(若省略步长为1),s3是最大值。例:用
9、不同的步距生成(0,p)间向量。v1=0:0.2:piv1=Columns 1 through 9 0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 Columns 10 through 16 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000 v2=0:-0.1:pi%步距为负,不能生成向量,得出空矩阵v2=Empty matrix:1-by-0 v3=0:pi%默认步长为1v3=0 1 2 3 v4=pi:-1:0 逆序排列构成新向量v4=3.1416 2.1416 1.1416
10、 0.1416 v5=0:0.4:pi,piv5=0 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000 3.1416基本语句格式 B=A(v1,v2)v1、v2分别表示提取行(列)号构成的向量。例:A=1,2,3,4;3,4,5,6;5,6,7,8;7,8,9,0A=1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 0 B1=A(1:2:end,:)提取全部奇数行、所有列。B1=1 2 3 4 5 6 7 8子矩阵提取 B2=A(3,2,1,2,3,4)提取3,2,1行、2,3,4列构成子矩阵。A=B2=1 2 3 4 6 7 8 3
11、4 5 6 4 5 6 5 6 7 8 2 3 4 7 8 9 0 B3=A(:,end:-1:1)将A矩阵左右翻转,即最后一列排在最前面。B3=4 3 2 1 6 5 4 3 8 7 6 5 0 9 8 7矩阵表示矩阵转置数学表示(若A有复数元素,先转置再取各元素共轭复数值,Hermit转置)MATLAB 求解 BA C=A2.3 基本数学运算矩阵的代数运算矩阵加减法 C=A+B D=A-B注意维数是否相等注意其一为标量的情形矩阵乘法数学表示MATLAB 表示 C=A*B注意两个矩阵相容性 矩阵除法矩阵左除:AX=B,求 XMATLAB 求解:X=AB若A为非奇异方阵,则 X=A-1B最小二
12、乘解(若A不是方阵)矩阵右除:XA=B,求 X MATLAB求解:X=B/A若A为非奇异方阵,则 X=BA-1最小二乘解(若A不是方阵)矩阵翻转左右翻转 B=fliplr(A)上下翻转 C=flipud(A)旋转 90o (逆时针)D=rot90(A)如何旋转180o?D=rot180(A)?Undefined function or variable rot180.D=rot90(rot90(A)矩阵乘方 A 为方阵,求 MATLAB 实现:F=Ax点运算-矩阵对应元素的直接运算数学表示:MATLAB 实现:C=A.*B例:A=1,2,3;4,5,6;7,8,0;B=A.A ()B=1 4
13、27 256 3125 46656 823543 16777216 1 C=A.*A ()C=1 4 9 16 25 36 49 64 0 a=1:5,b=6:10,a./ba=1 2 3 4 5b=6 7 8 9 10ans=Columns 1 through 3 0.16666666666667 0.28571428571429 0.37500000000000 Columns 4 through 5 0.44444444444444 0.50000000000000 a./aans=1 1 1 1 1逻辑变量:当前版本有逻辑变量对 double 变量来说,非 0 表示逻辑 1逻辑运算(相
14、应元素间的运算)与运算 A&C或运算 A|C非运算 A异或运算 xor(A,C)矩阵的逻辑运算各种允许的比较关系 ,=,AA=1 2 3 4 5 6 7 8 0 find(A=5),大于或等于5元素的下标 ans=3 5 6 8矩阵的比较运算 i,j=find(A=5);i,j 显示行标,列标ans=A=3 1 1 2 3 2 2 4 5 6 3 2 7 8 0 2 3 all(A=5)某列元素全大于或等于5时,相应元素为1,否则为0。ans=0 0 0 any(A=5)某列元素中含有大于或等于5时,相应元素为1,否则为0。ans=1 1 1Size of Matrix A=5 7 9;1-3
15、-7 ans=2 3 size(ans)ans=1 2 r,c=size(A)r=2 c=3Transpose of a matrix D=1 2 3 4 5;6 7 8 9 10;11 13 15 17 19;Dans=1 6 11 2 7 13 3 8 15 4 9 17 5 10 19 size(D),size(D)ans=3 5ans=5 3The Identity Matrix I=eye(3),x=8;-4;1,I*xI=1 0 0 0 1 0 0 0 1x=8 -4 1ans=8 -4 1Diagonal Matrices D=-3 0 0;0 4 0;0 0 2%维数比较高的时
16、候,不现实D=-3 0 0 0 4 0 0 0 2 d=-3 4 2,D=diag(d)On the other hand,if A is any matrix,the command diag(A)extracts its diagonal entries:F=0 1 8 7;3-2-4 2;4 2 1 1,diag(F)F=0 1 8 7 3 -2 -4 2 4 2 1 1ans=0 -2 1Building Matrices(可以应用“小”的矩阵合成“大”的矩阵)C=0 1;3-2;4 2;x=8;-4;1;G=C xG=0 1 8 3 -2 -4 4 2 1 J=1:4;5:8;9:1
17、2;20 0 5 4;K=diag(1:4)J;J zeros(4,4)K=1 0 0 0 1 2 3 4 0 2 0 0 5 6 7 8 0 0 3 0 9 10 11 12 0 0 0 4 20 0 5 4 1 5 9 20 0 0 0 0 2 6 10 0 0 0 0 0 3 7 11 5 0 0 0 0 4 8 12 4 0 0 0 0解析结果的化简与变换MATLAB 实现:s1=simple(s)从各种方法中自动选择最简格式 s1,how=simple(s)化简并返回实际采用的化简方法 其中,s为原始表达式,s1为化简后表达式,how为采用的化简方法。其他常用化简函数(信息与格式可用
18、 help命令得出)collect()合并同类项 expand()展开多项式 factor()因式分解 numden()提取多项式的分子和分母 sincos()三角函数的化简例:syms s;P=(s+3)2*(s2+3*s+2)*(s3+12*s2+48*s+64)P=(s+3)2*(s2+3*s+2)*(s3+12*s2+48*s+64)simple(P)%一系列化简尝试,得出计算机认为的最简形式ans=(s+3)2*(s+2)*(s+1)*(s+4)3 a,m=simple(P)%返回化简方法为因式分解方法,用 factor()函数将得同样结果 a=(s+3)2*(s+2)*(s+1)*
19、(s+4)3m=factor expand(P)ans=s7+21*s6+185*s5+883*s4+2454*s3+3944*s2+3360*s+1152变量替换 其中,f为原表达式,用x*替换x得出新的。例:求其 Taylor 幂级数展开 syms a b c d t;%假设这些变量均为符号变量 f=cos(a*t+b)+sin(c*t)*sin(d*t);%定义给定函数 f(t)f1=subs(f,a,b,c,d,t,0.5*pi,pi,0.25*pi,0.125*pi,4)f1=-1.0000基本数论运算下取整、上取整、四舍五入、离0近方向取整、最简有理数、求模的余数、最大公约数、最小
20、公倍数、质因数分解、判定是否为质数例:对下面的数据进行取整运算 -0.2765,0.5772,1.4597,2.1091,1.191,-1.6187 A=-0.2765,0.5772,1.4597,2.1091,1.191,-1.6187;floor(A)%向-inf 方向取整ans=-1 0 1 2 1 -2 ceil(A)%向+inf 方向取整ans=0 1 2 3 2 -1 round(A)%取最近的整数ans=0 1 1 2 1 -2 fix(A)%向 0 的方向取整ans=0 0 1 2 1 -1例:3x3 Hilbert 矩阵,试用 rat()函数变换 A=hilb(3);n,d=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- matlab 科学 计算 中的 应用 02
限制150内