材料力学第9章-压杆稳定3+第8章-能量法1.ppt
《材料力学第9章-压杆稳定3+第8章-能量法1.ppt》由会员分享,可在线阅读,更多相关《材料力学第9章-压杆稳定3+第8章-能量法1.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章第九章 压杆稳定压杆稳定9.1 引言引言9.2 细长压杆的欧拉细长压杆的欧拉(Euler)临界载荷临界载荷9.3 中、小柔度压杆的临界应力中、小柔度压杆的临界应力9.4 压杆的稳定条件压杆的稳定条件9.5 压杆的合理设计压杆的合理设计9.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷材料力学材料力学1各种支承约束条件下等截面细长压杆临界载荷的欧拉公式各种支承约束条件下等截面细长压杆临界载荷的欧拉公式支承情况支承情况两端铰支两端铰支一端固定一端固定另端铰支另端铰支两端固定两端固定一端固定一端固定另端自由另端自由失失稳稳时时挠挠曲曲线线形形状状临界载荷临界载荷Fcr的的欧拉公欧拉公式式
2、长度系数长度系数 =1 0.7=0.5=29.2 细长压杆的欧拉细长压杆的欧拉(Euler)临界载荷临界载荷29.3 中、小柔度压杆的临界应力中、小柔度压杆的临界应力39.4 压杆的稳定条件压杆的稳定条件49.4 压杆的稳定条件压杆的稳定条件稳定计算的三类问题稳定计算的三类问题 1.稳定校核稳定校核 2.选择截面选择截面 3.确定许用载荷确定许用载荷59.4 压杆的稳定条件压杆的稳定条件压杆稳定性计算步骤压杆稳定性计算步骤 a、计算、计算 、与与 :b、由压杆类型算由压杆类型算 ,大柔度杆大柔度杆,中柔度杆中柔度杆,根据有关经验根据有关经验 公式计算。公式计算。c、由稳定性条件进行稳定校核或确
3、定许用载荷:、由稳定性条件进行稳定校核或确定许用载荷:d、设计截面,这一类稳定性计算一般用折减系数法通过试算设计截面,这一类稳定性计算一般用折减系数法通过试算 来实现。来实现。69.5 压杆的合理设计压杆的合理设计79.5 压杆的合理设计压杆的合理设计8增大截面惯性矩增大截面惯性矩 I(合理选择截面形状)(合理选择截面形状)9.5 压杆的合理设计压杆的合理设计99.5 压杆的合理设计压杆的合理设计109.5 压杆的合理设计压杆的合理设计 例例6 厂房的钢柱由两根槽钢组成,并由缀板和缀条联结成整体,承受轴向压力F=270 kN。根据杆端约束情况,该钢柱的长度系数取为1.3。钢柱长7 m,材料为Q
4、235钢,强度许用应力s=170 MPa。该柱属于b类截面中心压杆。由于杆端连接的需要,其同一横截面上有4个直径为d0=30 mm的螺钉孔。试为该钢柱选择槽钢型号。119.5 压杆的合理设计压杆的合理设计解解:1.按稳定条件选择槽钢号码 为保证此槽钢组合截面压杆在xz平面内和xy平面内具有同样的稳定性,应根据ly=lz确定两槽钢的合理间距h。现先按压杆在xy平面内的稳定条件通过试算选择槽钢号码。假设0.50,得到压杆的稳定许用应力为因而按稳定条件算得每根槽钢所需横截面面积为129.5 压杆的合理设计压杆的合理设计由型钢表查得,14a号槽钢的横截面面积为 A=18.51 cm218.5110-4
5、 m2,而它对z轴的惯性半径为iz=5.52 cm=55.2 mm。下面来检查采用两根14a号槽钢的组合截面柱其稳定因数 是否不小于假设的 0.5。注意到此组合截面对于z 轴的惯性矩 Iz 和面积 A 都是单根槽钢的两倍,故组合截面的iz 值就等于单根槽钢的iz 值。于是有该组合截面压杆的柔度:139.5 压杆的合理设计压杆的合理设计由图9.11查得,Q235钢压杆相应的稳定因数为0.262。显然,前面假设的0.5这个值过大,需重新假设 值再来试算;重新假设的 值大致上取以前面假设的0.5和所得的0.262的平均值为基础稍偏于所得 的值。重新假设0.35,于是有149.5 压杆的合理设计压杆的
6、合理设计试选16号槽钢,其 A=25.1510-4 m2,iz=61 mm,从而有组合截面压杆的柔度:由图9.11得=0.311,它略小于假设的0.35。现按采用2根16号槽钢的组合截面柱而0.311进行稳定性校核。此时稳定许用应力为按横截面毛面积(不计螺孔)算得的工作应力为159.5 压杆的合理设计压杆的合理设计虽然工作应力超过了稳定许用应力,但仅超过1.5,这是允许的。2.计算钢柱两槽钢的合理间距 由于认为此钢柱的杆端约束在各纵向平面内相同,故要求组合截面的柔度ly=lz。根据 可知,也就是要求组合截面的惯性矩Iy=Iz。169.5 压杆的合理设计压杆的合理设计如果z0,Iy0,Iz0,A
7、0分别代表单根槽钢的形心位置和自身的形心主惯性矩以及横截面面积则IyIz的条件可表达为亦即消去公因子2A0后有在选用16号槽钢的情况下,上式为179.5 压杆的合理设计压杆的合理设计由此求得 h81.4 mm。实际采用的间距h不应小于此值。3.按钢柱的净横截面积校核强度钢柱的净横截面积为按净面积算得的用于强度计算的工作应力为它小于强度许用应力s=170 MPa,满足强度条件。18第九章第九章 压杆稳定压杆稳定9.1 引言引言9.2 细长压杆的欧拉细长压杆的欧拉(Euler)临界载荷临界载荷9.3 中、小柔度压杆的临界应力中、小柔度压杆的临界应力9.4 压杆的稳定条件压杆的稳定条件9.5 压杆的
8、合理设计压杆的合理设计9.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷材料力学材料力学199.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷209.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷ABxlFcrxBds219.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷ABxlFcrxBds229.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷ABCyxlFx239.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷249.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷259.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷269.6 用能量法求压杆
9、的临界载荷用能量法求压杆的临界载荷279.6 用能量法求压杆的临界载荷用能量法求压杆的临界载荷28第九章第九章 压杆稳定压杆稳定材料力学材料力学29第八章第八章 能量法能量法一、杆件的应变能一、杆件的应变能二、应变能普遍表达式二、应变能普遍表达式(克拉贝隆原理克拉贝隆原理)三、卡氏定理三、卡氏定理能量法能量法四、互等定理四、互等定理五、虚功原理五、虚功原理 单位力法单位力法 图乘法图乘法六、超静定问题六、超静定问题 力法力法七、冲击应力七、冲击应力30 求解弹性体系求解弹性体系(如杆件如杆件)的变形可采用的方法:的变形可采用的方法:1 1、分析法分析法/解析法解析法平衡方程平衡方程静力平衡关系
10、静力平衡关系几何方程几何方程变形变形几何关系几何关系物理方程物理方程应力应变关系应力应变关系 利用利用应变能应变能的概念,解决与弹性体系变形有关的问题的的概念,解决与弹性体系变形有关的问题的 方法。方法。在求解在求解组合变形组合变形、曲杆或杆系曲杆或杆系以及以及超静定问题超静定问题时,能量时,能量 法是一种非常有效的方法,是结构分析的基础。法是一种非常有效的方法,是结构分析的基础。能量法能量法/基本概念基本概念2 2、能量法、能量法31 能量法有关的几个基本概念能量法有关的几个基本概念 3 3、能量守恒:、能量守恒:忽略缓慢加载过程中动能和其它形式的能量损忽略缓慢加载过程中动能和其它形式的能量
11、损 失,杆件能量守恒,即杆内所储存的应变能失,杆件能量守恒,即杆内所储存的应变能U 在数值上与外力所作的功在数值上与外力所作的功 W 相等。相等。功能原理功能原理 UW1 1、外力功、外力功:线弹性体系在外力的作用下产生变形,每个外力线弹性体系在外力的作用下产生变形,每个外力 在与它相对应的位移上所作的功在与它相对应的位移上所作的功 W。2 2、应变能、应变能:弹性体受外力作用下产生变形而储存了能量,这个弹性体受外力作用下产生变形而储存了能量,这个 被储存的能量即为被储存的能量即为应变能应变能或或变形能变形能 U。能量法能量法/基本概念基本概念32 一、杆件产生基本变形时的应变能一、杆件产生基
12、本变形时的应变能1 1、轴向拉伸或压缩、轴向拉伸或压缩FL LOB LFA能量法能量法/杆件的应变能杆件的应变能式中式中 轴力,轴力,A 横截面面积横截面面积33 由拉压杆件组成的杆系的应变能:由拉压杆件组成的杆系的应变能:F12345 结构中第结构中第i杆的轴力杆的轴力 Li结构中第结构中第i杆的长度,杆的长度,Ai 第第i杆的截面面积杆的截面面积式中式中 n杆系中杆件的总数。杆系中杆件的总数。能量法能量法/杆件的应变能杆件的应变能34 取微段研究取微段研究:微段的应变能微段的应变能:整个杆件的整个杆件的拉压应变能拉压应变能受力复杂杆受力复杂杆(轴力沿杆的轴线变化轴力沿杆的轴线变化)的应变能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学 稳定 能量
限制150内