-基于matlab的车牌识别系统的设计(附程序+详解注释)(共42页).doc
《-基于matlab的车牌识别系统的设计(附程序+详解注释)(共42页).doc》由会员分享,可在线阅读,更多相关《-基于matlab的车牌识别系统的设计(附程序+详解注释)(共42页).doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上焦 作 大 学毕业设计(论文)说明书作 者: 学 号: 学院(系): 信息工程学院 专 业: 通信技术 题 目: 基于matlab的车牌识别系统的设计 主 题: 指导教师: 职称: 讲师 2012年12月专心-专注-专业 摘 要汽车车牌的识别系统是现代智能交通管理的重要组成部分之一。车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。本文的图像预处理模块是将图像灰度化和用Roberts算子进行边
2、缘检测的步骤。车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。字符的分割采用的方法是以二值化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。本文即是针对其核心部分进行阐述并使用MATLAB软件环境中进行字符分割的仿真实验。关键词:MATLAB、图像预处理、车牌定位、字符分割ABSTRACTVehicle license plate recognition system is one important of the modern intelligent traffic management. License plat
3、e recognition system to make more intelligent vehicle management, digital, Effective traffic management to enhance the convenience and effectiveness. License plate recognition system includes image acquisition, image preprocessing, license plate localization, character segmentation, character recogn
4、ition and other five core parts. In this paper, preprocessing, license plate localization, character segmentation method for the realization of three modules.This is the image preprocessing module and the use of the image grayscale Roberts edge detection operator steps. License plate location and se
5、gmentation using mathematical morphology method is used to determine the license plate location,Re-use license plate color segmentation method of color information to complete the license plate area segmentation. Character segmentation approach is based on the license plate after the binary part of
6、the vertical projection, Then scan in the vertical projection, thus completing the character segmentation. This article is described for the core part and use the MATLAB software environment, the simulation experiments for character segmentation.Keywords: MATLAB software, image preprocessing, licens
7、e plate localization, character segmentation .目 录1. 绪论1 1.1 本课题的研究背景11.2 本课题的研究目的及意义21.3 国内外发展状况31.4 主要应用领域51.5 设计原理62. MATLAB简介72.1 MATLAB发展历史72.2 MATLAB的语言特点73工作流程93.1 系统框架结构和工作流程94各模块的实现114.1设计方案114.2图像预处理114.2.1图像灰度化114.2.2图像的边缘检测124.3车牌定位和分割144.3.1车牌的定位154.3.2车牌的分割164.3.3对定位后的彩色车牌的进一步处理174.4字符的
8、分割和归一化处理17 4.4.1字符的分割18 4.4.2字符的归一化处理194.5 字符的识别195实验结果和分析226实验总结24致谢25参考文献26程序附录27第一章 绪论1.1 本课题的研究背景现代社会已进入信息时代,随着计算机技术、通信技术和计算机网络技术的发展,自动化信息处理能力和水平不断提高,作为现代社会主要交通工具之一的汽车在人们的生产生活的各个领域得到大量使用,对他的信息进行自动采集和管理具有十分重要的意义,成为信息处理技术的一项重要研究课题。此外,智能交通系统,简称ITS(Intelligent Traffic System)已成为现代社会道路交通发展趋势。只能交通系统,是
9、在当代科学技术高速发展的背景下产生的。其目标在于将现金的计算机处理技术、数据通信技术、自动控制技术等综合应用于地面交通管理体系,从而建立起一种高效、准确、实时的交通管理系统。公路交通基础建设的不断发展和车辆管理体制的不断完善,为以视觉监控为基础的智能交通系统的实际应用打下了良好基础。在智能交通系统中,车牌自动识别系统是一个非常重要的发展方向。车牌自动识别系统简称ALPRS或LPRS,该系统可以对车辆进行自动登记、验证、监视、报警。系统应用场合包括:高速公路,桥梁,隧道等收费管理系统。城市交通车辆管理,智能小区、智能停车场管理,车牌验证,车流统计等。同时,汽车牌照自动识别的基本方法还可以应用到其
10、他检测和识别领域,所以车牌自动识别问题已成为现代交通工程领域中研究的重点和热点问题之一。车牌识别系统是一项科技含量很高的多种技术结合的产品,主要有计算机视觉、数字图像处理、数字视频处理、模式识别等技术组成。也是智能交通系统的核心技术,产生于60年代。在80年代,由于城市交通问题日益严重,美国和欧洲许多国家投入了大量的人力和物力,建立了自动化高速公路网,安装了摄像、雷达探测系统和光纤网络,简历智能交通系统。在美国、欧洲、日本等发达国家的带动下,世界各国也开始简历智能交通系统。由于公路车流量日益增大、道路交通日益拥挤,车辆管理相对越来越困难,因此各个发达国家和发展中国家都在积极建设适应未来交通运输
11、需求的智能交通系统。车牌号识别系统是基于图像处理技术的基础进行研究的。本课题图像处理分为以下几方面:1.图像数字化其目的是将模拟形式的图像通过数字化设备变为数字计算机可用的离散的图像数据。2.图像变换为了达到某种目的而对图像使用一种数学技巧,经过变换后的图像更为方便、容易地处理和操作。3.图像增强图像增强的主要目标是改善图像的质量。采用某些处理技术来突出图像中的某些信息,削弱或消除某些无关信息,从而有目的地强调图像的整体或局部特征,让观察者能看到更加直接、清晰的分析和处理图像。直方图修正、灰度变换、强化图像轮廓等都是常用的手段。4.图像分割在图像研究和应用中,人们往往仅对图像的某些部分感兴趣。
12、它们一般对应图像中待定的、具有独特性质的区域。图像分割就是把图像中需要的那一个部分分割出来。5.图像分析图像分析的内容分为特征提取、图像分割、符号描述、和图像的检测与匹配。1.2 本课题的研究目的及意义车牌识别系统的主要任务是分析和处理摄取到的复杂背景下的车辆图像,定位分割牌照,最后自动识别汽车牌照上的字符,车牌识别是利用车辆牌照的唯一性来识别和统计车辆,它是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统。在现代化交通发展中车牌识别系统是制约交通系统智能化、现代化的重要因素,车牌识别系统应该能够从一幅图像中自动提取车辆图像,自动分割牌照图像,对字符进行正确识别,从而降低交通管理
13、工作的复杂度。车牌识别系统将获取的车辆图像进行一系列的处理后,以字符串的形式输出结果,这样不但数据量小,便于存储,操作起来也更容易,因此车牌识别系统的便捷性是人工车牌识别所不能比拟的,它蕴藏着很大的经济价值和发展空间,对车牌识别技术的研究是非常有的意义的。在车牌识别系统中最为重要的两个技术是车牌定位和车牌字符识别,这两个技术的好坏直接影响到整个车牌识别系统的实时性和准确性。国内外己有不少学者对车牌定位技术做了大量的研究,但在实际的应用中还没有一个有效可行的方法,如由于车辆抖动造成车牌图像的歪斜、由于污迹和磨损造成车牌字符的模糊、由于光照不均造成车牌图像的模糊等都会或多或少影响到车牌定位的准确度
14、。针对以上实际情况,很多学者开始在鉴于车牌图像本身特征的基础上研究车牌定位技术,并先后提出了一些有效的定位方法,以减小种种主、客观因素对车牌定位准确度的影响。然而智能交通的不断发展使得对车牌定位系统有了更高的要求,主要表现在系统的实时性和准确性。 车牌字符识别的实质是对车牌上的汉字、字母和数字进行快速准确的识别并以字符串的形式输出识别结果,字符识别技术是整个车牌识别系统的关键。车牌识别系统与其它图像识别系统相比较而言要复杂的多,在字符识别中,汉字识别是最难也是最关键的部分,很多国外较为成熟的车牌识别系统无法进入中国市场的原因就在于无法有效的识别汉字。此外,由于外界环境的影响,系统必须保证能够在
15、任何天气情况下全天不间断的正常工作。到目前为止,在众多的车牌自动识别方法中还没有一个可以达到理想的效果,因此对车牌识别技术的研究意义重大。1.3 国内外的发展状况从20世纪90年代初,国外就已经开始了对汽车牌照自动识别的研究,其主要途径就是对车牌的图像进行分析,自动提取车牌信息,确定汽车牌号。在各种应用中,有使用模糊数学理论也有用神经元网络的算法来识别车牌中的字符,但由于外界环境光线变化、光路中有灰尘、季节环境变化及车牌本身比较模糊等条件的影响,给车牌的识别带来较大的困难。国外的相关研究有:(1)J Barroso提出的基于扫描行高频分析的方法; (2) I.T. Lancaster提出的类字
16、符分析方法等。为了解决图像恶化的问题,目前国内外采用主动红外照明摄像或使用特殊的传感器来提高图像的质量,继而提高识别率,但系统的投资成本过大,不适合普遍的推广。 车牌识别系统中的两个关键子系统是车牌定位系统和车牌字符识别系统。 关于车牌定位系统的研究,国内外学者已经作了大量的工作,但实际效果并不是很理想,比如车牌图像的倾斜、车牌表面的污秽和磨损、光线的干扰等都是影响定位准确度的潜在因素。为此,近年来不少学者针对车牌本身的特点,车辆拍摄的不良现象及背景的复杂状况,先后提出了许多有针对性的定位方法,使车牌定位在技术和方法上都有了很大的改善.然而现代化交通系统不断提高的快节奏,将对车牌定位的准确率和
17、实时性提出更高的要求。因而进一步加深车牌定位的研究是非常必要的。 车牌字符识别是在车牌准确定位的基础上,对车牌上的汉字、字母、数字进行有效确认的过程,其中汉字识别是一个难点,许多国外的LPR系统也往往是因为汉字难以识别而无法打入中国市场,因而探寻好的方法解决字符的识别也是至关重要的。目前己有的方法很多,但其效果与实际的要求相差很远,难以适应现代化交通系统高速度、快节奏的要求。因而对字符识别的进一步研究也同样具有紧迫性和必要性。 从实用产品来看,如以色列的Hi-Tech公司研制的多种See/Car system,适应于几个不同国家的车牌识别,就针对中国格式车牌的See/Car syste而言,它
18、不能识别汉字,且识别率有待提高。新加坡Optasia公司的VLPRS产品,适合于新加坡的车牌,另外日本、加拿大、德国、意大利、英国等西方发达国家都有适合于本国车牌的识别系统。 我国的实际情况有所不同,国外的实际拍摄条件比较理想,车牌比较规范统一,而我国车牌规范不够,不同汽车类型有不同的规格、大小和颜色,所以车牌的颜色多,且位数不统一,对处理造成了一定的困难。在待处理的车牌图像中就有小功率汽车使用的蓝底白字牌照,大功率汽车所用的黄底黑字牌照,军车和警车的白底黑字,红字牌照,还有国外驻华机构的黑底白字牌照等。就位数而言,有七位数字的,有武警车九位数字的,有军车、前两位字符上下排列的等,所以也造成了
19、处理的难度。 国内做得较好的产品主要是中科院自动化研究所汉王公司的“汉王眼”,此外国内的亚洲视觉科技有限公司、深圳市吉通电子有限公司、中智交通电子系统有限公司等都有自己的产品,另外西安交通大学的图像处理与识别研究室、上海交通大学的计算机科学与工程系、清华大学、浙江大学等都做过类似的研究。通常处理时为了提高系统的识别率,都采用了一些硬件的探测器和其他的辅助设备如红外照明等,其中“汉王眼”就 是采用主动红外照明和光学滤波器来减弱可见光的不可控制影响,减少恶劣气候和汽车大小灯光的影响,另外还要求在高速公路管理窗口到“汉王眼”识别点埋设两条线路管 道,一条管道铺设220伏50赫兹1安培的交流供电线路:
20、另一条管道铺设触发信号线路和汉王眼与管理计算机的通讯线路,投资巨大,不适合于大面积的推广。 另外,还有两种专门的技术被用于车牌的识别中,条形码识别技术和无线射频技术。条形码识别要求预先在车身上印刷条形码,在系统的某一固定位置上安装扫描设备,通过扫描来读取条形码,以达到识别车辆的目的。无线射频技术要求在车内安装标示卡,在系统某一位置安装收发器等装置,通过收发器来接受标示卡的信号,从而识别出经过的车辆。显然,这两种技术更难以推广。 从目前一些产品的性能指标可以看出,车牌识别系统的识别率和识别速度有待提高。现代交通的飞速发展以及车牌识别系统应用范围的日益拓宽给车牌识别系统提出了更高的要求。因此,研究
21、高速、准确的定位与识别算法是当前的主要任务,而图像处理技术的发展与摄像设备、计算机性能的提高都会促进车牌识别技术的发展,提高车牌识别系统的性能。1.4 主要应用领域车牌自动识别系统具有广泛的应用范围,主要应用于:(1)高速公路收费、监控管理;(2)小区、停车场管理;(3)城市道路监控、违章管理;(4)车牌登录、验证;(5)车流统计、安全管理等。车牌自动识别系统应用于这些系统,可以解决通缉车辆的自动稽查问题,可以解决车流高峰期因出入口车流瓶颈造成的路桥卡口、停车场交通堵塞问题,可以解决因工作人员作弊造成的路桥卡口、高速公路、停车场应收款流失的问题,还可以以最简单的方式完成交通部门的车辆信息联网,
22、解决数据统计自动化,模糊查询的问题。车牌自动识别系统可安装于公路收费站、停车场、十字路口等交通关卡处,其具体应用可概括为: (l)交通监控利用车牌识别系统的摄像设备,可以直接监视相应路段的交通状况,获得车辆密度、队长、排队规模等交通信息,防范和观察交通事故。它还可以同雷达测速器或其他的检测器配合使用,以检测违犯限速值的车辆。当发现车辆超速时,摄像机获取该车的图像,并得到该车的牌照号码,然后给该车超速的警告信号。 (2)交通流控制指标参量的测量,为达到交通流控制的目标,一些交通流指标的测量相当重要。该系统能够测量和统计很多交通流指标参数,如总的服务流率,总行程时间,总的流入量流出量,车型及车流组
23、成,日车流量,小时/分钟车流量,车流高峰时间段,平均车速,车辆密度等。这也为交通诱导系统提供必要的交通流信息。 (3)高速公路上的事故自动测报这是由于该系统能够监视道路情况和测量交通流量指标,能及时发现超速、堵车、排队、事故等交通异常现象。 (4)对养路费交纳、安全检查、运营管理实行不停车检查根据识别出的车牌号码从数据库中调出该车档案材料,可发现没及时交纳养路费的车辆。另外,该系系统还可发现无车牌的车辆。若同车型检测器联用,可迅速发现所挂车牌与车型不符的车辆。 (5)车辆定位由于能自动识别车牌号码,因而极易发现被盗车辆,以及定位出车辆在道路上的行驶位置。这为防范、发现和追踪涉及车辆的犯罪,保护
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 matlab 车牌 识别 系统 设计 程序 详解 注释 42
限制150内