2013初二升初三数学暑假补习专用资料(共76页).doc
《2013初二升初三数学暑假补习专用资料(共76页).doc》由会员分享,可在线阅读,更多相关《2013初二升初三数学暑假补习专用资料(共76页).doc(78页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2013年初二升初三暑期补习教材(数学)2013年07月第一讲 一元二次方程 【学习目标】1、学会根据具体问题列出一元二次方程,培养把文字叙述的问题转换成数学语言的能力。2、了解一元二次方程的解或近似解。3、增进对方程解的认识,发展估算意识和能力。【知识要点】1、一元二次方程的定义:只含有一个未知数的整式方程,并且都可以化为(a、b、c、为常数,)的形式,这样的方程叫做一元二次方程。(1)定义解释:一元二次方程是一个整式方程;只含有一个未知数;并且未知数的最高次数是2。这三个条件必须同时满足,缺一不可。(2)(a、b、c、为常数,)叫一元二次方程的一般形式,也叫标准形
2、式。(3)在()中,a,b,c通常表示已知数。2、一元二次方程的解:当某一x的取值使得这个方程中的的值为0,x的值即是一元二次方程的解。3、一元二次方程解的估算:当某一x的取值使得这个方程中的的值无限接近0时,x的值即可看做一元二次方程的解。【经典例题】例1、下列方程中,是一元二次方程的是 ; ; ; ; ; ;例2、(1)关于x的方程(m4)x2+(m+4)x+2m+3=0,当m_时,是一元二次方程,当m_时,是一元一次方程.(2)如果方程ax2+5=(x+2)(x1)是关于x的一元二次方程,则a_.(3)关于x的方程是一元二次方程吗?为什么?例3、把下列方程先化为一般式,再指出下列方程的二
3、次项系数,一次项系数及常数项。(1)2x2x+1=0 (2)5x2+1=6x (3)(x+1)2=2x (4)例4、(1)某校办工厂利润两年内由5万元增长到9万元,设每年利润的平均增长率为x,可以列方程得( )A.5(1+x)=9 B.5(1+x)2=9C.5(1+x)+5(1+x)2=9 D.5+5(1+x)+5(1+x)2=9(2)某商品成本价为300元,两次降价后现价为160元,若每次降价的百分率相同,设为x,则方程为_.例5、一块四周镶有宽度相等的花边的地毯,如下图所示,它的长为8 m,宽为5 m,如果地毯中央长方形图案的面积为18 m2,那么花边有多宽?(列出方程并估算解得值)例6、
4、如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?【经典练习】一、选择题1、下列关于x的方程:1.5x2+1=0;2.3x2+1=0;3.4x2=ax(其中a为常数);2x2+3x=0; =2x; =2x中,一元二次方程的个数是( ) A、1 B、2 C、3 D、42、方程x22(3x2)+(x+1)=0的一般形式是A.x25x+5=0B.x2+5x+5=0 C.x2+5x5=0D.x2+5=03、一元二次方程7x22x=0的二次项、一次项、常数项依次是A.7x2,2x,0B.7x2,2x,无常数项C.7x2,0,2
5、xD.7x2,2x,04、若x=1是方程ax2+bx+c=0的解,则A.a+b+c=1 B.ab+c=0 C.a+b+c=0 D.abc=0二、填空题1、将化为一般形式为_,此时它的二次项系数是. _,一次项系数是_,常数项是_。2、如果(a+2)x2+4x+3=0是一元二次方程,那么a所满足的条件为_.3、已知两个数之和为6,乘积等于5,若设其中一个数为x,可得方程为_.4、某高新技术产生生产总值,两年内由50万元增加到75万元,若每年产值的增长率设为x,则方程为_.5、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐月上升,第一季度共生产化工原料60万吨,设一、二月份平均增长的
6、百分率相同,均为x,可列出方程为_.三、解答题1、某商场销售商品收入款:3月份为25万元,5月份为36万元,该商场4、5月份销售商品收入款平均每月增长的百分率是多少?【课后作业】一、填空题1、方程5(x2x+1)=3x+2的一般形式是_,其二次项是_,一次项是_,常数项是_.2、若关于x的方程是一元二次方程,这时a的取值范围是_3、某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为x,根据题意列方程_.二、选择题1、下列方程中,不是一元二次方程的是 ( )A.2x2+7=0 B.2x2+2x+1=0 C.5x2+4=0 D.3x2+(1+x) +1=02、
7、方程x22(3x2)+(x+1)=0的一般形式是 ( )A.x25x+5=0B.x2+5x+5=0 C.x2+5x5=0 D.x2+5=03、一元二次方程的二次项、一次项、常数项依次是 ( )A.7x2,2x,1 B.7x2,2x,无常数项 C.7x2,0,2xD.7x2,2x,-44、方程x2=()x化为一般形式,它的各项系数之和可能是 ( )A.B.C.D.5、若关于x的方程(ax+b)(dcx)=m(ac0)的二次项系数是ac,则常数项为 ( )A.mB.bdC.bdmD.(bdm)6、若关于x的方程a(x1)2=2x22是一元二次方程,则a的值是 ( )A.2B.2C.0D.不等于27
8、、若x=-1是方程ax2+bx+c=0的解,则 ( )A.a+b+c=1 B.ab+c=0 C.-a+b+c=0D.abc=0第二讲 一元二次方程(配方法)【学习目标】1、会用开平方法解形如的方程。2、理解配方法,会用配方法解简单的数字系数的一元二次方程。3、经历列解方程解决实际问题的过程,体会转化的数学思想,增强数学应用意识和能力。【知识要点】1、直接开平方法解一元二次方程:(1) 把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成的形式(2) 直接开平方,解得2、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。3、用
9、配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果中a不等于1,必须两边同时除以a,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。(3)方程两边同时加上一次项系数一半的平方。(4)用直接开平方法求出方程的根。【经典例题】例1、解下列方程:(1)x2=4 (2)(x+3)2=9 例2、配方:填上适当的数,使下列等式成立:(1)x2+12x+=(x+6)2 (2)x2+8x+ =(x+ )2(3)x212x+ =(x )2例3、用配方法解方程(1)3x2+8x3=0 (2) (3) (4)例4、请你尝试证明关于x的方程,不论m取何值,该方程都是一元二次
10、方程。例5、 一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系: h=15 t5t2,小球何时能达到10m高?【经典练习】一、填空题1、若x2=225,则x1=_,x2=_.2、若9x225=0,则x1=_,x2=_.3、填写适当的数使下式成立.x2+6x+_=(x+3)2 x2_x+1=(x1)2 x2+4x+_=(x+_)24、为了利用配方法解方程x26x6=0,我们可移项得_,方程两边都加上_,得_,化为_.解此方程得x1=_,x2=_.5、将长为5,宽为4的矩形,沿四个边剪去宽为x的4个小矩形,剩余部分的面积为12,则剪去小矩形的宽x为_.6、如图1
11、,在正方形ABCD中,AB是4 cm,BCE的面积是DEF面积的4倍,则DE的长为_.7、如图2,梯形的上底AD=3 cm,下底BC=6 cm,对角线AC=9 cm,设OA=x,则x=_ cm.图1 图2二、选择题1、方程5x2+75=0的根是 ( )A.5 B.5 C .5 D.无实根2、方程3x21=0的解是 ( )A.x= B.x=3 C.x= D.x=3、一元二次方程x22xm=0,用配方法解该方程,配方后的方程为( )A.(x1)2=m2+1B.(x1)2=m1C.(x1)2=1mD.(x1)2=m+14、用配方法解方程x2+x=2,应把方程的两边同时( )A.加B.加C.减D.减5
12、、已知xy=9,xy=3,则x2+3xy+y2的值为( )A.27B.9C.54D.18三、计算题(用配方法解下列方程)(1) (2)(3)x2+5x1=0 (4)2x24x1=0(5) x26x+3=0 (6)x2x+6=0(7) (8)(9) (10)四、解答题两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.【课后作业】1、将下列方程两边同时乘以或除以适当的数,然后再写成(x+m)2=n的形式(1)2x2+3x2=0 (2)x2+x2=02、用配方法解下列方程(1)x2+5x5=0 (2)2x24x3=
13、0(3) x23x-3=0 (4)第三讲 一元二次方程(公式法)【学习目标】1、学会一元二次方程求根公式的推导。2、理解公式法,会用公式法解简单的数字系数的一元二次方程。3、经历一元二次方程的求根公式的探索过程,体会公式法和配方法的内在联系。【知识要点】1、 复习用配方法接一元二次方程的步骤,推导出一元二次方程的求根公式:对于一元二次方程其中,由配方法有。(1)当时,得;(2)当时,一元二次方程无实数解。2、公式法的定义:利用求根公式接一元二次方程的方法叫做公式法。3、运用求根公式求一元二次方程的根的一般步骤:(1)必须把一元二次方程化成一般式,以明确a、b、c的值;(2)再计算的值:当时,方
14、程有实数解,其解为:;当时,方程无实数解。【经典例题】例1、推导求根公式:()例2、利用公式解方程:(1) (2) (3) (4)例3、已知a,b,c均为实数,且b1(c3)20,解方程例4、你能找到适当的x的值使得多项式A=4x2+2x1与B=3x22相等吗?例5、一元二次方程(m1)x23m2x(m23m4)0有一根为零,求m的值及另一根【经典练习】1、用公式法解方程3x2+4=12x,下列代入公式正确的是 ( )A.x1、2= B.x1、2=C.x1、2= D.x1、2=2、方程x2+3x=14的解是 ( )A.x=B.x= C.x= D.x=3、下列各数中,是方程x2(1+)x+=0的
15、解的有 ( )1+ 1 1 A.0个B.1个 C.2个 D.3个5、若代数式x26x5的值等于12,那么x的值为( )A1或5B7或1C1或5D7或16、关于x的方程3x22(3m1)x2m15有一个根为2,则m的值等于( )A2BC2D7、当x为何值时,代数式2x27x1与4x1的值相等?9、用公式法解下列各方程(1)x2+6x+9=7 (2)(3) (4) (5) (6)(7) (8)(9) (10)(11) (12)【课后作业】1、方程(x5)26的两个根是( )Ax1x25 Bx1x25Cx15,x25Dx15,x25 2、利用求根公式解一元二次方程时,首先要把方程化为_,确定_的值,
16、当_时,把a,b,c的值代入公式,x1,2=_求得方程的解.3、当x为何值时,代数式2x27x1与x219的值互为相反数?4、用公式法解下列方程:(1) (2)(3) (4) (5) (6)第四讲 一元二次方程(分解因式法)【学习目标】1、能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。2、会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程。3、会根据题目的特点灵活的选择各种方法解一元二次方程。【知识要点】1、 分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的
17、解,这种解一元二次方程的方法称为分解因式法。2、分解因式法的理论依据是:若,则或3、用分解因式法解一元二次方程的一般步骤:将方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为零,得到两个一元一次方程;解这两个一元一次方程,他们的解就是一元一次方程的解。【典型例题】例1、(1)方程的根是_ (2)方程的根是_例2、 用分解因式法解下列方程(1) (2)(3) (4) (5) (6)(7) (8)(x1)24(x1)210例3、2是方程x2+bx1=0的一个根,则b=_,另一个根是_.例4、已知a25ab+6b2=0,则等于 ( )例5、解关于x的方程:(a2b2)x2+4a
18、bxa2b2例6、x为何值时,等式【经典练习】一、填空题.1、用因式分解法解方程9=x2-2x+1(1)移项得 ;(2)方程左边化为两个数的平方差,右边为0得 ;(3)将方程左边分解成两个一次因式之积得 ;(4)分别解这两个一次方程得x1 = , x2= 。2、(1)方程t(t3)28的解为_(2)方程(2x1)23(2x1)0的解为_3、(1)用因式分解法解方程5(x+3)-2x(x+3)=0,可把其化为两个一元一次方程 和 求解。(2)方程x216=0,可将方程左边因式分解得方程_,则有两个一元一次方程_或_,分别解得:x1=_,x2=_.4、如果方程x2-3x+c=0有一个根为1,那么c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 初二 初三 数学 暑假 补习 专用 资料 76
限制150内