人教版八年级数学上册知识点归纳10269.pdf
《人教版八年级数学上册知识点归纳10269.pdf》由会员分享,可在线阅读,更多相关《人教版八年级数学上册知识点归纳10269.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级上册数学知识点归纳 第十一章 三角形 知识点一:三角形 1、定义:由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。2、分类:(1)按角分:锐角三角形;直角三角形;钝角三角形;(2)按边分:不等边三角形;等腰三角形;等边三角形;3、角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。4、中线:连接一个顶点与对边中点的线段叫做三角形的中线。5、高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。注意:三角形的角平分线、中线和高都有三条。6、三角形的三边关系:三角形的任意两边的和大于第三边,任意两边
2、的差小于第三边。7、三角形的内角:三角形的内角和等于180。如图:180321 8、三角形的外角(1)三角形的一个外角与相邻的内角互补。18041(2)三角形的一个外角等于与它不相邻的两个内角的和。324(3)三角形的一个外角大于任何一个与它不相邻的内角。42或43 6、三角形的周长、面积求法和三角形稳定性。(1)如图 1:CABC=ABBCAC 或 CABC=abc。四个量中已知其中三个能求第四个。(2)如图 2:AD 为高,SABC=21BCAD 三个量中已知其中两个能求第三个。(3)如图 3:ABC 中,ACB=90,CD 为 AB 边上的高,则有:SABC=21ABCD=21ACBC
3、即:ABCD=ACBC 四条线段中已知其中三条能求第四条。知识点二:多边形及其内角和 43211、n边形的内角和=2180 n;2、n边形的外角和=360。3、一个n边形的对角线有(3)2n n条,过n边形一个顶点能作出 n-3 条对角线,把n边形分成了 n-2 个三角形。练习题:1三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A角平分线 B中位线 C高 D中线【考点】三角形的角平分线、中线和高 2下列线段能组成三角形的是()A1,1,3 B1,2,3 C2,3,5 D3,4,5【考点】三角形三边关系 3 如图,ABD,ACD 的角平分线交于点 P,若A=50,D=10,则P
4、 的度数为()A15 B20 C25 D30【考点】三角形的外角性质;角平分线的定义;三角形内角和定理 4一个多边形的每个内角都等于 120,则这个多边形的边数为()A4 B5 C6 D7【考点】多边形内角与外角 第十二章:全等三角形 12.1 全等三角形(1)、全等图形:形状、大小相同的图形能够完全重合;(2)、全等形:能够完全重合的两个图形叫做全等形;(3)、全等三角形:能够完全重合的两个三角形叫做全等三角形;(4)、平移、翻折、旋转前后的图形全等;(5)、对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6)、对应角:全等三角形中相互重合的角叫做对应角;(7)、对应边:全等三角形中相互
5、重合的边叫做对应边;(8)、全等表示方法:用“”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9)、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;12.2 三角形全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:三边对应相等的两个三角形全等;(“边边边”或“SS”S)两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”)两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”)两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”)斜边和一条直角边对
6、应相等的两个直角三角形全等;(“斜边直角边”或“HL”)注:证明三角形全等:判断两个三角形全等的推理过程;经常利用证明三角形全等来证明三角形的边或角相等;三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“SSS”解释)12.3 角的平分线的性质(1)、角的平分线的作法:课本第 19 页;(2)、角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3)、证明一个几何中的命题,一般步骤:明确命题中的已知和求证;根据题意,画出图形,并用数学符号表示已知和求证;经过分析,找出由已知推出求证的途径,写出证明过程;(4)、性质定理的逆定理:角的内部到角两边的距离相等的点
7、在角的平分线上;(利用三角形全等来解释)(5)、三角形的三条角平分线相交于一点,该点为内心;练习题:5已知 ABCDEF,且A=100,E=35,则F=()A35 B45 C55 D70【考点】全等三角形的性质 6如图,已知ABC=DCB,下列所给条件不能证明 ABCDCB 的是()AA=D BAB=DC CACB=DBC DAC=BD【考点】全等三角形的判定 7下列条件中能判定 ABCDEF 的是()AAB=DE,BC=EF,A=D BA=D,B=E,C=F CAC=DF,B=F,AB=DE DB=E,C=F,AC=DF【考点】全等三角形的判定 8如图,已知 ABC 中,AB=AC,AD=A
8、E,BAE=30,则DEC 等于()A7.5 B10 C15 D18【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质 9如图,A、C、B 三点在同一条直线上,DAC 和 EBC 都是等边三角形,AE、BD 分别与 CD、CE 交于点 M、N,求证:ACEDCB;CM=CN 【考点】全等三角形的判定与性质;等边三角形的性质 10如图,A、B、C 在同一直线上,且 ABD,BCE 都是等边三角形,AE 交 BD 于点M,CD 交 BE 于点 N,求证:(1)BDN=BAM;(2)BMN 是等边三角形 【考点】全等三角形的判定与性质;等边三角形的判定与性质 11已知:如图,ABC 是等腰
9、直角三角形,D 为 AB 边上的一点,ACB=DCE=90,DC=EC 求证:B=EAC 【考点】全等三角形的判定与性质;等腰直角三角形 第十三章:轴对称 13.1 轴对称(1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴(2)对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(3)两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这(4)两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(5)轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个
10、图形的两部分(6)能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(7)轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。(8)垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;(9)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(10)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;(11)对称的两个图形是全等的;(12)垂直平分线性质:线段垂直平分线上的点与这条线段两个端点
11、的距离相等;(13)逆定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;13.2 作轴对称图形(1)作轴对称图形:分别作出原图形中某些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;(注意取特殊点)(2)点(x,y)关于 x 轴对称的点的坐标为:(x,-y);点(x,y)关于 y 轴对称的点的坐标为:(-x,y);13.3 等腰三角形(1)等腰三角形的性质:等腰三角形的两个底角相等(“等边对等角”);等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;(2)等腰三角形是轴对称图形,三线合一所在直线是其对称轴;(只有 1 条对称轴)(3)等腰三角形的判定
12、:如果一个三角形有两条边相等;如果一个三角形有两个角相等,那么这两个角所对的边也相等;(等角对等边)(4)等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形)(5)等边三角形的性质:等边三角形的三个内角都是 60 等边三角形的每条边都存在三线合一;(6)等边三角形是轴对称图形,对称轴是三线合一所在直线;(有 3 条对称轴)(7)等边三角形的判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是 60的等腰三角形是等边三角形;(8)在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半;练习题:12.下列“表情图”中,不属于轴对称图形
13、的是()A流泪 B气晕 C不要啊 D苦瓜脸【考点】轴对称图形 13.如图,在 ABC 中,C=90,DE 垂直平分 AB,分别交 AB,BC 于 D,E(1)若CAE=B+30,求B 的大小;(2)若 AC=3,AB=5,求 AEB 的周长 【考点】线段垂直平分线的性质 第十四章:整式的乘除与因式分解 14.1 整式的乘法(1)同底数幂的乘法:mnm naaa(m,n 都是正整数)即:同底数幂相乘,底数不变,指数相加;(2)幂的乘方:nmmnaa(m,n 都是正整数)即:幂的乘方,底数不变,指数相乘;(3)积的乘方:nnnaba b(n 是正整数)即:积的乘方,等于把积的每一个因式分别乘方,再
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 上册 知识点 归纳 10269
限制150内