2017年天津市高考数学试卷(理科)详细解析版(共20页).doc
《2017年天津市高考数学试卷(理科)详细解析版(共20页).doc》由会员分享,可在线阅读,更多相关《2017年天津市高考数学试卷(理科)详细解析版(共20页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)设集合A=1,2,6,B=2,4,C=xR|1x5,则(AB)C=()A2B1,2,4C1,2,4,5DxR|1x52(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()AB1CD33(5分)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A0B1C2D34(5分)设R,则“|”是“sin”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件5(5分)已知双曲线=1(a0,b0)的左焦点为F,离心
2、率为若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A=1B=1C=1D=16(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x)若a=g(log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()AabcBcbaCbacDbca7(5分)设函数f(x)=2sin(x+),xR,其中0,|x若f()=2,f()=0,且f(x)的最小正周期大于2,则()A=,=B=,=C=,=D=,=8(5分)已知函数f(x)=,设aR,若关于x的不等式f(x)|+a|在R上恒成立,则a的取值范围是()A,2B,C2,2D2,二.填空题:本大题共6小
3、题,每小题5分,共30分.9(5分)已知aR,i为虚数单位,若为实数,则a的值为 10(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 11(5分)在极坐标系中,直线4cos()+1=0与圆=2sin的公共点的个数为 12(5分)若a,bR,ab0,则的最小值为 13(5分)在ABC中,A=60,AB=3,AC=2若=2,=(R),且=4,则的值为 14(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个(用数字作答)三.解答题:本大题共6小题,共80分解答应写出文字说明,证明过程或演
4、算步骤15(13分)在ABC中,内角A,B,C所对的边分别为a,b,c已知ab,a=5,c=6,sinB=()求b和sinA的值;()求sin(2A+)的值16(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,()设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;()若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率17(13分)如图,在三棱锥PABC中,PA底面ABC,BAC=90点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2()求证:MN平面BDE;()求二面角C
5、EMN的正弦值;()已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长18(13分)已知an为等差数列,前n项和为Sn(nN+),bn是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a42a1,S11=11b4()求an和bn的通项公式;()求数列a2nb2n1的前n项和(nN+)19(14分)设椭圆+=1(ab0)的左焦点为F,右顶点为A,离心率为已知A是抛物线y2=2px(p0)的焦点,F到抛物线的准线l的距离为(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D若APD的面
6、积为,求直线AP的方程20(14分)设aZ,已知定义在R上的函数f(x)=2x4+3x33x26x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数()求g(x)的单调区间;()设m1,x0)(x0,2,函数h(x)=g(x)(mx0)f(m),求证:h(m)h(x0)0;()求证:存在大于0的常数A,使得对于任意的正整数p,q,且1,x0)(x0,2,满足|x0|2017年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)设集合A=1,2,6,B=2,4,C=xR|1x5,则(AB)C=()A2B1,2,4C1,2,4,5DxR
7、|1x5【分析】由并集概念求得AB,再由交集概念得答案【解答】解:A=1,2,6,B=2,4,AB=1,2,4,6,又C=xR|1x5,(AB)C=1,2,4 故选:B【点评】本题考查交、并、补集的混合运算,是基础题2(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为() AB1CD3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可【解答】解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3 故选:D【点评】本题考查线性规划的简单应用,考查计算能力以及数形结合思想的应用3(
8、5分)阅读上面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为() A0B1C2D3【分析】根据程序框图,进行模拟计算即可【解答】解:第一次N=24,能被3整除,N=3不成立,第二次N=8,8不能被3整除,N=81=7,N=73不成立,第三次N=7,不能被3整除,N=71=6,N=23成立,输出N=2, 故选C【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键4(5分)设R,则“|”是“sin”的()A充分而不必要条件B必要而不充分条件C充要条件 D既不充分也不必要条件【解答】解:|0,sin+2k+2k,kZ,则(0,)+2k,+2k,kZ,可得“|
9、”是“sin”的充分不必要条件 故选:A【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题5(5分)已知双曲线=1(a0,b0)的左焦点为F,离心率为若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A=1B=1C=1D=1【解答】解:设双曲线的左焦点F(c,0),离心率e=,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=x=x,则经过F和P(0,4)两点的直线的斜率k=,则=1,c=4,则a=b=2,双曲线的标准方程:; 故选B【点评】本题考查双曲线的简单几何性质,等轴双曲线的应用,
10、属于中档题6(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x)若a=g(log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()AabcBcbaCbacDbca【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+)单调递增,则a=g(log25.1)=g(log25.1),则2log25.13,120.82,即可求得bac【解答】解:奇函数f(x)在R上是增函数,当x0,f(x)f(0)=0,且f(x)0,g(x)=xf(x),则g(x)=f(x)+xf(x)0,g(x)在(0,+)单调递增,且g(x)=xf(x)偶函数,a=g
11、(log25.1)=g(log25.1),则2log25.13,120.82,由g(x)在(0,+)单调递增,则g(20.8)g(log25.1)g(3),bac, 故选C【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题7(5分)设函数f(x)=2sin(x+),xR,其中0,|x若f()=2,f()=0,且f(x)的最小正周期大于2,则()A=,= B=,=C=,= D=,=【解答】解:由f(x)的最小正周期大于2,得,又f()=2,f()=0,得,T=3,则,即f(x)=2sin(x+)=2sin(x+),由f()=,得sin(+)=1+=,kZ取k=0,得=,=
12、 故选:A【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(x+)型函数的性质,是中档题8(5分)已知函数f(x)=,设aR,若关于x的不等式f(x)|+a|在R上恒成立,则a的取值范围是()A,2B,C2,2D2,【分析】讨论当x1时,运用绝对值不等式的解法和分离参数,可得x2+x3ax2x+3,再由二次函数的最值求法,可得a的范围;讨论当x1时,同样可得(x+)a+,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围【解答】解:当x1时,关于x的不等式f(x)|+a|在R上恒成立,即为x2+x3+ax2x+3,即有x2+x3ax2x+3,由y=x2+x3的对称轴为x
13、=1,可得x=处取得最大值;由y=x2x+3的对称轴为x=1,可得x=处取得最小值,则a当x1时,关于x的不等式f(x)|+a|在R上恒成立,即为(x+)+ax+,即有(x+)a+,由y=(x+)2=2(当且仅当x=1)取得最大值2;由y=x+2=2(当且仅当x=21)取得最小值2则2a2由可得,a2 故选:A【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题二.填空题:本大题共6小题,每小题5分,共30分.9(5分)已知aR,i为虚数单位,若为实数,则a的值为2【解答】解:=i由
14、为实数,可得=0, 解得a=2 故答案为:2【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题10(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可【解答】解:设正方体的棱长为a,这个正方体的表面积为18,6a2=18,则a2=3,即a=,一个正方体的所有顶点在一个球面上,正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=()3=; 故答案为:【点评】本题主要考查空间正方体和球的关系,利用正方体
15、的体对角线等于直径,结合球的体积公式是解决本题的关键11(5分)在极坐标系中,直线4cos()+1=0与圆=2sin的公共点的个数为2【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,与半径比较即可得出位置关系【解答】解:直线4cos()+1=0展开为:4+1=0,化为:2x+2y+1=0圆=2sin即2=2sin,化为直角坐标方程:x2+y2=2y,配方为:x2+(y1)2=1圆心C(0,1)到直线的距离d=1=R直线4cos()+1=0与圆=2sin的公共点的个数为2 故答案为:2【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 天津市 高考 数学试卷 理科 详细 解析 20
限制150内