导数的四则运算课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《导数的四则运算课件.ppt》由会员分享,可在线阅读,更多相关《导数的四则运算课件.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、返回返回返回返回后页后页后页后页前页前页前页前页 一、导数的四则运算2 求导法则 导数很有用,但全凭定义来计算导 四、基本求导法则与公式 三、复合函数的导数 二、反函数的导数求导法则,使导数运算变得较为简便.数是不方便的.为此要建立一些有效的返回返回返回返回返回返回返回返回后页后页后页后页前页前页前页前页一、导数的四则运算在点在点 x0 也可导也可导,且且推论推论 若若 u(x)在点在点 x0 可导可导,c 是常数是常数,则则 在点在点 x0 也可导也可导,且且定理定理 5.6 若函数若函数 在点在点 x0 可导可导,则函数则函数定理定理 5.5 若函数若函数 在点在点 x0 可导可导,则函数
2、则函数返回返回返回返回后页后页后页后页前页前页前页前页定理定理 5.6 可推广到任意有限个函数相乘的情形可推广到任意有限个函数相乘的情形,如如 下面证明乘积公式下面证明乘积公式(2),请读者自行证明公式请读者自行证明公式(1).证证(2)按定义可得按定义可得 返回返回返回返回后页后页后页后页前页前页前页前页注意注意:,:,千万不要把导数乘积公式千万不要把导数乘积公式(2)记错了记错了.返回返回返回返回后页后页后页后页前页前页前页前页例例1 解解 因此因此,对于多项式对于多项式 f 而言而言,总是比总是比 f 低一低一个幂次个幂次.例例2 解解 由公式由公式 (2),得,得 返回返回返回返回后页
3、后页后页后页前页前页前页前页 在点在点 x0 也可导也可导,且且定理定理5.7 若函数若函数 在点在点 x0 可导可导,返回返回返回返回后页后页后页后页前页前页前页前页证证由于由于 在点在点 x0 可导可导,因此因此返回返回返回返回后页后页后页后页前页前页前页前页对对 应用公式应用公式(2)和和(5),得得(5)返回返回返回返回后页后页后页后页前页前页前页前页例例3 求下列函数的导数:求下列函数的导数:解解返回返回返回返回后页后页后页后页前页前页前页前页同理可得同理可得 同理可得同理可得返回返回返回返回后页后页后页后页前页前页前页前页证证 定理定理 5.8 设设 为为 的反函数,在的反函数,在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 四则运算 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内