会计准则--博弈模型与竞争策略分析.pptx
《会计准则--博弈模型与竞争策略分析.pptx》由会员分享,可在线阅读,更多相关《会计准则--博弈模型与竞争策略分析.pptx(62页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章第七章 博弈模型与竞争策略博弈模型与竞争策略前面我们讨论:前面我们讨论:消费者理论消费者理论效用最大化效用最大化个人偏好;个人偏好;生产者理论生产者理论利润最大化利润最大化企业技术。企业技术。但寡头垄断企业在作决策时,必须考虑竞争但寡头垄断企业在作决策时,必须考虑竞争对手的可能反应。需要用博弈论来扩展我对手的可能反应。需要用博弈论来扩展我们对厂商的决策分析。们对厂商的决策分析。博弈模型与竞争策略博弈模型与竞争策略n现代经济学越来越转向研究人与人之间行现代经济学越来越转向研究人与人之间行为的相互影响和作用,人与人之间的利益为的相互影响和作用,人与人之间的利益冲突与一致,人与人之间的竞争和合
2、作。冲突与一致,人与人之间的竞争和合作。n现代经济学注意到个人理性可能导致集体现代经济学注意到个人理性可能导致集体非理性(矛盾与冲突)。非理性(矛盾与冲突)。一、导言一、导言理性人假设:理性人假设:竞争者都是理性的,他们都各自追求利润竞争者都是理性的,他们都各自追求利润最大化。但在最大化效用或利润时,人们最大化。但在最大化效用或利润时,人们需要合作,也一定存在冲突;人们的行为需要合作,也一定存在冲突;人们的行为互相影响。互相影响。导言导言博弈论研究的问题:博弈论研究的问题:n决策主体的行为发生直接相互作用时的决决策主体的行为发生直接相互作用时的决策及其均衡问题,即在存在相互外部经济策及其均衡问
3、题,即在存在相互外部经济性条件下的选择问题。性条件下的选择问题。如:如:OPEC成员国石油产量决策成员国石油产量决策 国与国之间的军备竞赛国与国之间的军备竞赛 中央与地方之间的税收问题中央与地方之间的税收问题导言导言例一例一 田忌与齐王赛马田忌与齐王赛马 齐王齐王 上上 中中 下下 田忌田忌 上上 中中 下下 若同级比赛,田忌将输三千金;若同级比赛,田忌将输三千金;若不同级比赛,田忌将赢一千金。若不同级比赛,田忌将赢一千金。条件是:事先知道对方的策略。条件是:事先知道对方的策略。导言导言例二例二 房地产开发博弈房地产开发博弈房地产开发商房地产开发商 A B每开发每开发1栋写字楼,投资栋写字楼,
4、投资1亿元,亿元,收益如下:收益如下:市场情况市场情况 开发开发1栋楼栋楼 开发开发2栋楼栋楼 需求大需求大 1.8亿元亿元/栋栋 1.4亿元亿元/栋栋 需求小需求小 1.1亿元亿元/栋栋 0.7亿元亿元房地产开发博弈房地产开发博弈现在有现在有8种开发方式种开发方式:1.需求大时:需求大时:(开发,开发)(开发,开发)(开发,不开发(开发,不开发)(不开发,开发)(不开发(不开发,开发)(不开发,不开发,不开发)2.需求小时:需求小时:(开发,开发)(开发,开发)(开发,不开发(开发,不开发)(不开发,开发)(不开发(不开发,开发)(不开发,不开发,不开发)房地产开发博弈房地产开发博弈n假定:
5、假定:1.双方同时作决策,并不知道对方的决策;双方同时作决策,并不知道对方的决策;2.市场需求对双方都是已知的。市场需求对双方都是已知的。n结果:结果:1.市场需求大,双方都会开发,各得利润市场需求大,双方都会开发,各得利润4千万;千万;2.市场需求小,一方要依赖对方的决策,如果市场需求小,一方要依赖对方的决策,如果A认为认为B会开发,会开发,A最好不开发,结果获利均为零;最好不开发,结果获利均为零;3.如果市场需求不确定,就要通过概率计算。如果市场需求不确定,就要通过概率计算。二、博弈的基本要素二、博弈的基本要素1、参与人(参与人(player)参与博弈的直接当事人,博弈的决策主体和参与博弈
6、的直接当事人,博弈的决策主体和决策制定者,其目的是通过选择策略,最决策制定者,其目的是通过选择策略,最大化自己的收益(或支出)水平。大化自己的收益(或支出)水平。参与人可以是个人、集团、企业、国家等。参与人可以是个人、集团、企业、国家等。k=1,2,K博弈的基本要素博弈的基本要素2、策略(策略(strategy)参与人在给定信息的情况下的行动方案,也是对其参与人在给定信息的情况下的行动方案,也是对其他参与人作出的反应。他参与人作出的反应。策略集策略集(strategy group)参与人所有可选择策略)参与人所有可选择策略的集合。的集合。策略组合策略组合(strategy combinatio
7、n)一局对策中,)一局对策中,各参与人所选定的策略组成一个策略组合,或称各参与人所选定的策略组成一个策略组合,或称一个局势。一个局势。S=(s1i,s2j,)博弈的基本要素博弈的基本要素3、支付(或收益)函数支付(或收益)函数(payoff matrix)当所有参与人,确定所采取的策略以后,他当所有参与人,确定所采取的策略以后,他们各自会得到相应的收益(或支付),它们各自会得到相应的收益(或支付),它是测量组合的函数。是测量组合的函数。令令Uk 为第为第k个参与人的收益函数:个参与人的收益函数:Uk=Uk(s1,s2,)田忌与齐王赛马的收益函数田忌与齐王赛马的收益函数 1 2 3 4 5 6(
8、上中下)(上中下)131111-1(上下中)(上下中)21311-11(中上下)(中上下)31-13111(中下上)(中下上)4-111311(下中上)(下中上)511-1131(下上中)(下上中)6111-113房地产开发博弈的收益函数房地产开发博弈的收益函数 各单元的第一个数是各单元的第一个数是A的得益,第二个数是的得益,第二个数是B的的得益。得益。需求大时利润需求大时利润 需求小时利润需求小时利润 B B A 开发开发 不开发不开发 开发开发 不开发不开发开发开发 4,4 8,0 -3,-3 1,0不开发不开发 0,8 0,0 0,1 0,0三、博弈分类三、博弈分类1.合作对策和非合作对
9、策(有无有约束力的合作对策和非合作对策(有无有约束力的协议、承诺或威胁)协议、承诺或威胁)2.静态对策和动态对策(决策时间同时或有静态对策和动态对策(决策时间同时或有先后秩序,能否多阶段、重复进行)先后秩序,能否多阶段、重复进行)3.完全信息对策和不完全信息对策(是否拥完全信息对策和不完全信息对策(是否拥有决策信息)有决策信息)4.对抗性对策和非对抗性对策(根据收益冲对抗性对策和非对抗性对策(根据收益冲突的性质)突的性质)博弈分类博弈分类静静 态态动动 态态完全完全信息信息完全信息静态对策,完全信息静态对策,纳什均衡纳什均衡。完全信息动态对策,完全信息动态对策,子对策完美纳什均衡子对策完美纳什
10、均衡。不完全不完全信息信息不完全信息静态对不完全信息静态对策,策,贝叶斯纳什均贝叶斯纳什均衡衡。不完全信息动态对策,不完全信息动态对策,完美贝叶斯纳什均衡完美贝叶斯纳什均衡。完全信息静态对策完全信息静态对策n完全信息静态对策完全信息静态对策完全信息动态对策完全信息动态对策n完全信息动态对策完全信息动态对策不完全信息静态对策不完全信息静态对策n不完全信息静态对策不完全信息静态对策不完全信息动态对策不完全信息动态对策n不完全信息动态对策不完全信息动态对策完全信息静态对策完全信息静态对策两个寡头垄断厂商之间经济博弈策略两个寡头垄断厂商之间经济博弈策略在博弈中博弈者采取的策略大体上可以有在博弈中博弈者
11、采取的策略大体上可以有三种三种1.上策(上策(dominant Strategy)不管对手做什么,对博弈方都是最优的策略不管对手做什么,对博弈方都是最优的策略 完全信息静态对策完全信息静态对策厂商厂商 B领导者领导者追随者追随者追随者追随者厂商厂商A220,2501000,15 0100,950800,800如厂商如厂商A和和B相互争夺领相互争夺领导地位导地位:A考虑:不管考虑:不管B怎么决定,怎么决定,争做领导都是最好。争做领导都是最好。B考虑:也是同样的。考虑:也是同样的。结论:两厂都争做领导者,结论:两厂都争做领导者,这是上策。这是上策。领导者领导者完全信息静态对策完全信息静态对策如厂商
12、如厂商A和和B相互竞争销相互竞争销售产品,正在决定是售产品,正在决定是否采取广告计划否采取广告计划:考虑考虑A,不管不管B怎么决定,怎么决定,都是做广告最好。都是做广告最好。考虑考虑B,也是同样的。,也是同样的。结论:两厂都做广告,结论:两厂都做广告,这是上策。这是上策。厂商厂商 B做广告做广告不做广告不做广告做广告做广告不做广告不做广告厂商厂商A10,515,06,810,2完全信息静态对策完全信息静态对策 但不是每个博弈方都有但不是每个博弈方都有上策的,现在上策的,现在A没有上策。没有上策。A把自己放在把自己放在B的位置,的位置,B有一个上策,不管有一个上策,不管A怎样怎样做,做,B做广告
13、。做广告。若若B做广告,做广告,A自己也自己也应当做广告。应当做广告。厂商厂商 B做广告做广告不做广告不做广告做广告做广告不做广告不做广告厂商厂商A10,515,06,820,2完全信息静态对策完全信息静态对策但在许多博弈决策中,一个或多个博弈方没有上但在许多博弈决策中,一个或多个博弈方没有上策,这就需要一个更加一般的均衡,即纳什均策,这就需要一个更加一般的均衡,即纳什均衡。衡。纳什均衡是纳什均衡是给定给定对手的行为,博弈方做它所能做对手的行为,博弈方做它所能做的最好的。的最好的。古尔诺模型的均衡是纳什均衡,古尔诺模型的均衡是纳什均衡,而而上策均衡上策均衡是是不管不管对手行为,我所做的是我对手
14、行为,我所做的是我所能做的最好的。上策均衡是纳什均衡的特例。所能做的最好的。上策均衡是纳什均衡的特例。完全信息静态对策完全信息静态对策 由于厂商选择了可能的最佳选择,由于厂商选择了可能的最佳选择,没有没有改变的冲动改变的冲动,因此是一个,因此是一个稳定的均衡稳定的均衡。上例是一个纳什均衡,但也不是所有上例是一个纳什均衡,但也不是所有的博弈都存在一个纳什均衡,有的没有纳的博弈都存在一个纳什均衡,有的没有纳什均衡,有的有多个纳什均衡。什均衡,有的有多个纳什均衡。完全信息静态对策完全信息静态对策 例如:有两个公司要在例如:有两个公司要在同一个地方投资超市或旅同一个地方投资超市或旅馆,他们的得益矩阵为
15、:馆,他们的得益矩阵为:一个投资超市,一个投一个投资超市,一个投资旅馆,各赚一千万,同资旅馆,各赚一千万,同时投资超市或旅馆,各亏时投资超市或旅馆,各亏五百万,他们之间不能串五百万,他们之间不能串通,那么应当怎样决策呢?通,那么应当怎样决策呢?厂商厂商 B超市超市旅馆旅馆 超市超市旅馆旅馆厂商厂商A-5,-510,1010,10-5,-5完全信息静态对策完全信息静态对策2.最小得益最大化策略(最小得益最大化策略(Maxmin Strategy)博弈的策略不仅取决于自己的理性,博弈的策略不仅取决于自己的理性,而且取决于对手的理性。而且取决于对手的理性。如某电力局在考虑要不要在江边建一如某电力局在
16、考虑要不要在江边建一座火力发电站,港务局在考虑要不要在江座火力发电站,港务局在考虑要不要在江边扩建一个煤码头。边扩建一个煤码头。他们的得益矩阵为:他们的得益矩阵为:完全信息静态对策完全信息静态对策 电力局建电厂是上策。港务局电力局建电厂是上策。港务局应当可以期望电力局建电厂,因应当可以期望电力局建电厂,因此也选择扩建。这是此也选择扩建。这是纳什均衡纳什均衡。但万一电力局不理性,选择但万一电力局不理性,选择不建厂,港务局的损失太大了。不建厂,港务局的损失太大了。如你处在港务局的地位,一个如你处在港务局的地位,一个谨慎的做法是什么呢?谨慎的做法是什么呢?就是最小得益最大化策略。就是最小得益最大化策
17、略。电力局电力局不建电厂不建电厂建电厂建电厂不扩建不扩建扩建扩建港务局港务局1,01,0.5-10,02,1完全信息静态对策完全信息静态对策 最小得益最大化是一个保守的策略。最小得益最大化是一个保守的策略。它不是利润最大化,是保证得到它不是利润最大化,是保证得到1而不会而不会损失损失10。电力局选择建厂,也是得益最小最大化电力局选择建厂,也是得益最小最大化策略。策略。如果港务局能确信电力局采取最小如果港务局能确信电力局采取最小得益最大化策略,港务局就会采用扩建的得益最大化策略,港务局就会采用扩建的策略。策略。完全信息静态对策完全信息静态对策 在著名的囚徒困境的矩在著名的囚徒困境的矩阵中,坦白对
18、各囚徒来说阵中,坦白对各囚徒来说是上策,同时也是最小得是上策,同时也是最小得益最大化决策。坦白对各益最大化决策。坦白对各囚徒是理性的,尽管对这囚徒是理性的,尽管对这两个囚徒来说,理想的结两个囚徒来说,理想的结果是不坦白。果是不坦白。囚徒囚徒B坦白坦白不坦白不坦白坦白坦白不坦白不坦白囚徒囚徒A-5,-5-1,-10-10,-1-2,-2不完全信息静态对策不完全信息静态对策3.混合策略混合策略 在有些博弈中,不存在所谓纯策略的纳在有些博弈中,不存在所谓纯策略的纳什均衡。在任一个纯策略组合下,都有一个什均衡。在任一个纯策略组合下,都有一个博弈方可单方改变策略而得到更好的得益。博弈方可单方改变策略而得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 会计准则 博弈 模型 竞争 策略 分析
限制150内