(精品)《计量经济分析方法与建模》第二版课件-第06章__条件异方差模型.ppt
《(精品)《计量经济分析方法与建模》第二版课件-第06章__条件异方差模型.ppt》由会员分享,可在线阅读,更多相关《(精品)《计量经济分析方法与建模》第二版课件-第06章__条件异方差模型.ppt(99页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 条件异方差模型 EViews中中的的大大多多数数统统计计工工具具都都是是用用来来建建立立随随机机变变量量的的条条件件均均值值模模型型。本本章章讨讨论论的的重重要要工工具具具具有有与与以以往往不不同同的的目目的的建立变量的条件方差或变量波动性模型。建立变量的条件方差或变量波动性模型。我我们们想想要要建建模模并并预预测测其其变变动动性性通通常常有有如如下下几几个个原原因因:首首先先,我我们们可可能能要要分分析析持持有有某某项项资资产产的的风风险险;其其次次,预预测测置置信信区区间间可可能能是是时时变变性性的的,所所以以可可以以通通过过建建立立残残差差方方差差模模型型得得到到更更精精确确的的
2、区区间间;第第三三,如如果果误误差差的的异异方方差差是是能能适适当当控制的,我们就能得到更有效的估计。控制的,我们就能得到更有效的估计。1 6.1 6.1 自回归条件异方差模型自回归条件异方差模型自回归条件异方差模型自回归条件异方差模型 自自 回回 归归 条条 件件 异异 方方 差差(Autoregressive Conditional Heteroscedasticity Model,ARCH)模模型型是是特特别别用用来来建建立立条条件件方差模型并对其进行预测的。方差模型并对其进行预测的。ARCH模模型型是是1982年年由由恩恩格格尔尔(Engle,R.)提提出出,并并由由博博勒勒 斯斯 莱
3、莱 文文(Bollerslev,T.,1986)发发 展展 成成 为为 GARCH(Generalized ARCH)广广义义自自回回归归条条件件异异方方差差。这这些些模模型型被被广广泛泛的的应应用用于于经经济济学学的的各各个个领领域域。尤尤其其在在金金融融时时间间序序列列分分析中。析中。按按照照通通常常的的想想法法,自自相相关关的的问问题题是是时时间间序序列列数数据据所所特特有有,而而异异方方差差性性是是横横截截面面数数据据的的特特点点。但但在在时时间间序序列列数数据据中中,会会不会出现异方差呢?会是怎样出现的?不会出现异方差呢?会是怎样出现的?2 恩格尔和克拉格(恩格尔和克拉格(Kraft
4、,D.,1983)在分析宏观在分析宏观数据时,发现这样一些现象:时间序列模型中的扰数据时,发现这样一些现象:时间序列模型中的扰动方差稳定性比通常假设的要差。恩格尔的结论说动方差稳定性比通常假设的要差。恩格尔的结论说明在分析通货膨胀模型时,大的及小的预测误差会明在分析通货膨胀模型时,大的及小的预测误差会大量出现,表明存在一种异方差,其中预测误差的大量出现,表明存在一种异方差,其中预测误差的方差取决于后续扰动项的大小。方差取决于后续扰动项的大小。3 从事于股票价格、通货膨胀率、外汇汇率等金融时间序从事于股票价格、通货膨胀率、外汇汇率等金融时间序列预测的研究工作者,曾发现他们对这些变量的预测能力随列
5、预测的研究工作者,曾发现他们对这些变量的预测能力随时期的不同而有相当大的变化。预测的误差在某一时期里相时期的不同而有相当大的变化。预测的误差在某一时期里相对地小,而在某一时期里则相对地大,然后,在另一时期又对地小,而在某一时期里则相对地大,然后,在另一时期又是较小的。这种变异很可能由于金融市场的波动性易受谣言、是较小的。这种变异很可能由于金融市场的波动性易受谣言、政局变动、政府货币与财政政策变化等等的影响。从而说明政局变动、政府货币与财政政策变化等等的影响。从而说明预测误差的方差中有某种相关性。预测误差的方差中有某种相关性。为了刻画这种相关性,恩格尔提出自回归条件异方差为了刻画这种相关性,恩格
6、尔提出自回归条件异方差(ARCH)模型。模型。ARCH的主要思想是时刻的主要思想是时刻 t 的的ut 的的方差方差(=t2 )依赖于时刻依赖于时刻(t 1)的扰动项平方的大小,即依赖于的扰动项平方的大小,即依赖于 t2-1。4 6.1.1 ARCH6.1.1 ARCH模型模型模型模型 为了说得更具体,让我们回到为了说得更具体,让我们回到k-变量回归模型:变量回归模型:(6.1.1)如如果果 ut 的的均均值值为为零零,对对 yt 取取基基于于(t-1)时时刻刻的的信信息息的的期期望望,即即Et-1(yt),有如下的关系:有如下的关系:(6.1.2)由由于于 yt 的的均均值值近近似似等等于于式
7、式(6.1.1)的的估估计计值值,所所以以式式(6.1.1)也称为)也称为均值方程均值方程均值方程均值方程。5 假假设设在在时时刻刻(t 1)所所有有信信息息已已知知的的条条件件下下,扰扰动项动项 ut 的的条件分布是:条件分布是:(6.1.7)也也就就是是,ut 遵遵循循以以0为为均均值值,(0+1u2t-1)为为方方差差的正态分布。的正态分布。6 由于由于(6.1.7)中中 ut 的方差依赖于前期的平方扰动项,我们的方差依赖于前期的平方扰动项,我们称它为称它为ARCH(1)过程:过程:通通常常用用极极大大似似然然估估计计得得到到参参数数 0,1,2,k,0,1的的有效估计。有效估计。容易加
8、以推广,容易加以推广,ARCH(p)过程可以写为:过程可以写为:(6.1.8)这时方差方程中的这时方差方程中的(p+1)个参数个参数 0,1,2,p也要和回归也要和回归模型中的参数模型中的参数 0,1,2,k一样,利用极大似然估计法进一样,利用极大似然估计法进行估计。行估计。7 如果扰动项方差中没有自相关,就会有如果扰动项方差中没有自相关,就会有 H0:这时这时 从而得到扰动项方差的同方差性情形。从而得到扰动项方差的同方差性情形。恩恩格格尔尔曾曾表表明明,容容易易通通过过以以下下的的回回归归去去检检验验上上述述虚虚拟拟假设:假设:其中,其中,t 表示从原始回归模型(表示从原始回归模型(6.1.
9、1)估计得到的)估计得到的OLS残残差。差。8 在在 ARCH(p)过过程程中中,由由于于 ut 是是随随机机的的,ut2 不不可可能能为为负负,所所以以对对于于 ut 的的所所有有实实现现值值,只只有有是是正正的的,才才是是合合理理的的。为为使使 ut2 协协方方差差平平稳稳,所所以以进进一一步步要要求求相相应应的特征方程的特征方程 (6.1.9)的根全部位于单位圆外。如果的根全部位于单位圆外。如果 i(i=1,2,p)都非都非负,式(负,式(6.1.9)等价于)等价于 1+2+p 1 1。96.1.2 ARCH6.1.2 ARCH的检验的检验的检验的检验 下下面面介介绍绍检检验验一一个个模
10、模型型的的残残差差是是否否含含有有ARCH效效应应的的两种方法:两种方法:ARCH LM检验和残差平方相关图检验。检验和残差平方相关图检验。1.ARCH LM1.ARCH LM检验检验检验检验 Engle在在1982年提出检验残差序列中是否存在年提出检验残差序列中是否存在ARCH效效应的拉格朗日乘数检验(应的拉格朗日乘数检验(Lagrange multiplier test),即),即ARCH LM检验。自回归条件异方差性的这个特殊的设定,检验。自回归条件异方差性的这个特殊的设定,是由于人们发现在许多金融时间序列中,残差的大小与最是由于人们发现在许多金融时间序列中,残差的大小与最近的残差值有关
11、。近的残差值有关。ARCH本身不能使标准的本身不能使标准的OLS估计无效,估计无效,但是,忽略但是,忽略ARCH影响可能导致有效性降低。影响可能导致有效性降低。10 ARCH LM检验统计量由一个辅助检验回归计算。为检检验统计量由一个辅助检验回归计算。为检验验原假设:残差中直到原假设:残差中直到原假设:残差中直到原假设:残差中直到q q阶都没有阶都没有阶都没有阶都没有ARCHARCH,运行如下回归:运行如下回归:式式中中 t 是是残残差差。这这是是一一个个对对常常数数和和直直到到 q 阶阶的的滞滞后后平平方方残残差所作的回归。这个检验回归有两个统计量:差所作的回归。这个检验回归有两个统计量:(
12、1)F 统统计计量量是是对对所所有有残残差差平平方方的的滞滞后后的的联联合合显显著著性性所所作的一个省略变量检验;作的一个省略变量检验;(2)T R2 统统计计量量是是Engles LM检检验验统统计计量量,它它是是观观测测值个数值个数 T 乘以回归检验的乘以回归检验的 R2;11 普通回归方程的普通回归方程的ARCH检验都是在残差检验下拉列表中检验都是在残差检验下拉列表中进行的,需要注意的是,只有使用最小二乘法、二阶段最小进行的,需要注意的是,只有使用最小二乘法、二阶段最小二乘法和非线性最小二乘法估计的方程才有此项检验。二乘法和非线性最小二乘法估计的方程才有此项检验。Breusch-Paga
13、n-GodfreyHarveyGlejserARCHWhiteCustom Test Wizard图图图图6.4 6.4 普通方程的普通方程的普通方程的普通方程的ARCHARCH检验列表检验列表检验列表检验列表122.2.残差平方相关图残差平方相关图残差平方相关图残差平方相关图 显显示示直直到到所所定定义义的的滞滞后后阶阶数数的的残残差差平平方方t2的的自自相相关关性性和和偏偏自自相相关关性性,计计算算出出相相应应滞滞后后阶阶数数的的Ljung-Box统统计计量量。残残差差平平方方相相关关图图可可以以用用来来检检查查残残差差自自回回归归条条件件异异方方差差性性(ARCH)。如如如如果果果果残残
14、残残差差差差中中中中不不不不存存存存在在在在ARCHARCH,在在在在各各各各阶阶阶阶滞滞滞滞后后后后自自自自相相相相关关关关和和和和偏偏偏偏自自自自相相相相关关关关应应应应为为为为0 0,且且且且QQ统统统统计计计计量量量量应应应应不不不不显显显显著著著著。可可适适用用于于使使用用LS,TSLS,非非线线性性LS估估计计方方程程。在在图图6.4中中选选择择Residuals Tests/Correlogram Squared Residuals项项,它它是是对对方方程程进进行行残残差差平平方方相相关关图图的的检检验验。单单击击该该命命令令,会会弹弹出出一一个个输输入入计计算算自自相相关关和和
15、偏偏自自相相关关系系数数的的滞滞后后阶阶数数设设定定的的对对话话框框,默默认认的的设设定为定为36,单击,单击OK按钮,得到检验结果。按钮,得到检验结果。13 例例例例6.6.1 1 沪市股票价格指数波动的沪市股票价格指数波动的沪市股票价格指数波动的沪市股票价格指数波动的ARCHARCH检验检验检验检验 为为了了检检验验股股票票价价格格指指数数的的波波动动是是否否具具有有条条件件异异方方差差性性,本本例例选选择择了了沪沪市市股股票票的的收收盘盘价价格格指指数数的的日日数数据据作作为为样样本本序序列列,这这是是因因为为上上海海股股票票市市场场不不仅仅开开市市早早,市市值值高高,对对于于各各种种冲
16、冲击击的的反反应应较较为为敏敏感感,因因此此,本本例例所所分分析析的的沪沪市市股股票票价价格格波波动动具具有有一一定定代代表表性性。在在这这个个例例子子中中,我我们们选选择择的的样样本本序序列列sp是是1996年年1月月1日日至至2006年年12月月31日日的的上上海海证证券券交交易易所所每每日日股股票票价价格格收收盘盘指指数数,为为了了减减少少舍舍入入误误差差,在在估估计计时时,对对sp进进行行自自然然对对数数处处理理,即即将将序序列列ln(sp)作为因变量进行估计。作为因变量进行估计。14 由由于于股股票票价价格格指指数数序序列列常常常常用用一一种种特特殊殊的的单单位位根根过过程程随随机机
17、游游动动(Random Walk)模模型型描描述述,所所以以本本例例进进行行估估计计的基本形式为:的基本形式为:(6.1.12)首首先先利利用用最最小小二二乘乘法法,估估计计了了一一个个普普通通的的回回归归方方程程,结结果如下:果如下:(6.1.13)(2.35)(951)R2=0.997 15 可可以以看看出出,这这个个方方程程的的统统计计量量很很显显著著,而而且且,拟拟合合 的的程程度度也也很很好好。但但是是需需要要检检验验这这个个方方程程的的误误差差项项是是否否存存在条件异方差性,。在条件异方差性,。16 图图图图6.16.1 股票价格指数方程回归残差股票价格指数方程回归残差股票价格指数
18、方程回归残差股票价格指数方程回归残差 观观察察上上图图,该该回回归归方方程程的的残残差差,我我们们可可以以注注意意到到波波动动的的“成成群群”现现象象:波波动动在在一一些些较较长长的的时时间间内内非非常常小小,在在其其他他一一些些较较长长的的时间内非常大,这说明残差序列存在高阶时间内非常大,这说明残差序列存在高阶ARCH效应。效应。17 因此,对式因此,对式(6.1.26)进行条件异方差的进行条件异方差的ARCH LM检验,检验,得到了在滞后阶数得到了在滞后阶数p=3时的时的ARCH LM检验结果如下。此处的检验结果如下。此处的P值为值为0,拒绝原假设,说明式(,拒绝原假设,说明式(6.1.2
19、6)的残差序列存在)的残差序列存在ARCH效应。效应。可以计算式(可以计算式(6.1.26)的残差平方)的残差平方t2的自相关(的自相关(AC)和偏自和偏自相关(相关(PAC)系数,结果说明式(系数,结果说明式(6.1.26)的残差序列存在)的残差序列存在ARCH效应。效应。18 例例例例6.6.2 2 中国中国中国中国CPICPI模型的模型的模型的模型的ARCHARCH检验检验检验检验 本例建立本例建立CPI模型,因变量为中国的消费价格指数(上年同月模型,因变量为中国的消费价格指数(上年同月=100)减去)减去100,记为,记为cpit;解释变量选择货币政策变量:狭义货;解释变量选择货币政策
20、变量:狭义货币供应量币供应量M1的增长率,记为的增长率,记为m1rt;3年期贷款利率,记为年期贷款利率,记为Rt,样本,样本期间是期间是1994年年1月月2007年年12月。由于是月度数据,利用月。由于是月度数据,利用X-12季节季节调整方法对调整方法对 cpit 和和 m1rt 进行了调整,结果如下:进行了调整,结果如下:t=(19.5)(-5.17)(2.88)(-2.74)R2=0.99 对数似然值对数似然值=-167.79 AIC=2.045 SC=2.12 19 这个方程的统计量很显著,拟合的程度也很好。但是这个方程的统计量很显著,拟合的程度也很好。但是观察该回归方程的残差图,也可以
21、注意到波动的观察该回归方程的残差图,也可以注意到波动的“成群成群”现象:波动在一些时期内较小,在其他一些时期内较大,现象:波动在一些时期内较小,在其他一些时期内较大,这说明误差项可能具有条件异方差性。这说明误差项可能具有条件异方差性。20 从自相关系数和偏自相关系数可以看出:残差序列存在从自相关系数和偏自相关系数可以看出:残差序列存在着一阶着一阶ARCH效应。再进行条件异方差的效应。再进行条件异方差的ARCH LM检验,检验,得到了在滞后阶数得到了在滞后阶数p=1时的时的ARCH LM检验结果:检验结果:因此计算残差平方因此计算残差平方t2的自相关(的自相关(AC)和偏自相关()和偏自相关(P
22、AC)系数,结果如下:系数,结果如下:21 从自相关系数和偏自相关系数可以看出:残差序列存在着一阶从自相关系数和偏自相关系数可以看出:残差序列存在着一阶ARCH效应。因此利用效应。因此利用ARCH(1)模型重新估计模型模型重新估计模型(6.1.14),结),结果如下:果如下:均值方程:均值方程:z=(12.53)(-1.53)(4.72)(-3.85)方差方程:方差方程:z=(5.03)(3.214)R2=0.99 对数似然值对数似然值=-151.13 AIC=1.87 SC=1.98 方差方程中的方差方程中的ARCH项的系数是统计显著的,并且对数似然值项的系数是统计显著的,并且对数似然值有所
23、增加,同时有所增加,同时AIC和和SC值都变小了,这说明值都变小了,这说明ARCH(1)模型能够更模型能够更好的拟合数据。好的拟合数据。22 再对这个方程进行条件异方差的再对这个方程进行条件异方差的ARCH LM检验,得到了检验,得到了残差序列在滞后阶数残差序列在滞后阶数p=1时的统计结果:时的统计结果:此时的相伴概率为此时的相伴概率为0.69,接受原假设,认为该残差序列,接受原假设,认为该残差序列不存在不存在ARCH效应,说明利用效应,说明利用ARCH(1)模型消除了式模型消除了式(6.1.14)的残差序列的条件异方差性。式()的残差序列的条件异方差性。式(6.1.15)的残差)的残差平方相
24、关图的检验结果为:平方相关图的检验结果为:自相关系数和偏自相关系数近似为自相关系数和偏自相关系数近似为0。这个结果也说明了。这个结果也说明了残差序列不再存在残差序列不再存在ARCH效应。效应。23 6.1.3 6.1.3 GARCHGARCH模型模型模型模型 扰扰动动项项 ut 的的方方差差常常常常依依赖赖于于很很多多时时刻刻之之前前的的变变化化量量(特特别别是是在在金金融融领领域域,采采用用日日数数据据或或周周数数据据的的应应用用更更是是如如此此)。因因此此 必必须须估估计计很很多多参参数数,而而这这一一点点很很难难精精确确的的做做到到。但但是是如果我们能够意识到方程如果我们能够意识到方程(
25、6.1.8)不过是不过是 t2 的分布滞后模型,的分布滞后模型,我我们们就就能能够够用用一一个个或或两两个个 t2 的的滞滞后后值值代代替替许许多多 ut2的的滞滞后后值值,这这 就就 是是 广广 义义 自自 回回 归归 条条 件件 异异 方方 差差 模模 型型(generalized autoregressive conditional heterosce-dasticity model,简简记记为为GARCH模模型型)。在在GARCH模模型型中中,要要考考虑虑两两个个不不同同的的设设定:一个是条件均值,另一个是条件方差。定:一个是条件均值,另一个是条件方差。24 在标准化的在标准化的GAR
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量经济分析方法与建模 精品 计量 经济 分析 方法 建模 第二 课件 06 _ 条件 方差 模型
限制150内