《三角形内角和定理》课件1.ppt
《《三角形内角和定理》课件1.ppt》由会员分享,可在线阅读,更多相关《《三角形内角和定理》课件1.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.6三角形内角和定理三角形内角和定理证明命题的一般步骤证明命题的一般步骤:与同伴交流你在探索思路的过程中的具体做法与同伴交流你在探索思路的过程中的具体做法.(1)理解题意理解题意:分清命题的条件分清命题的条件(已知已知),结论,结论(求证求证);(2)根据题意,画出图形;根据题意,画出图形;(3)结合图形,用符号语言写出结合图形,用符号语言写出“已知已知”和和“求证求证”;(4)分析题意,探索证明思路;分析题意,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写依据思路,运用数学符号和数学语言条理清晰地写出证明过程;出证明过程;(6)检查表达过程是否正确,完善检查表达过程是否正
2、确,完善.我们知道三角形三个内角的和等于我们知道三角形三个内角的和等于180.你还记得你还记得这个结论的探索过程吗?这个结论的探索过程吗?112ABD23C(1)如图,当时我们是如图,当时我们是把把A移到了移到了1的位的位置,置,B移到了移到了2的的位置位置.如果不实际移动如果不实际移动A和和B,那么你还,那么你还有其它方法可以有其它方法可以 达到达到同样的效果?同样的效果?(2)根据前面的公理和定理,你能用自己的语言根据前面的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简捷的说说这一结论的证明思路吗?你能用比较简捷的语言写出这一证明过程吗?与同伴交流语言写出这一证明过程吗
3、?与同伴交流.已知已知:如图如图ABC.求证求证:A+B+C=180.证明证明:作作BC的延长线的延长线CD,过点,过点C作作CEAB,则则 你还有其它方法来证明三角形内角和定理吗?你还有其它方法来证明三角形内角和定理吗?1=A(两直线平行,内错角相等两直线平行,内错角相等),2=B(两直线平行,同位角相等两直线平行,同位角相等).).又又1+2+3=180(平角的定义平角的定义),A+B+ACB=180(等量代换等量代换).).分析分析:延长延长BC到到D,过点,过点C作作射线射线CEAB,这样,就相,这样,就相当于把当于把A移到了移到了1的位的位置,置,把把B移到了移到了2的位的位置置.这
4、里的这里的CD,CE称为称为辅助线,辅助线,辅助线通辅助线通常画成虚常画成虚线线.ABCE213D在证明三角形内角和定理时,小明的想法是把三在证明三角形内角和定理时,小明的想法是把三个角个角“凑凑”到到A处,他过点处,他过点A作直线作直线PQBC(如图如图),他的想法可以吗?,他的想法可以吗?请你帮小明把想法化为实际行动请你帮小明把想法化为实际行动.小明的想法已经变为现实,由此你小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?受到什么启发?你有新的证法吗?证明证明:过点过点A作作PQBC,则则ABC 1=B(两直线平行,内错角相等两直线平行,内错角相等),2=C(两直线平行,内错角
5、相等两直线平行,内错角相等),又又1+2+3=180(平角的定义平角的定义),BAC+B+C=180(等量代换等量代换).).所作的辅助所作的辅助线是证明的线是证明的一个重要组一个重要组成部分,要成部分,要在证明时首在证明时首先叙述出来先叙述出来.PQ231三角形内角和定理三角形内角和定理:三角形三个内角的和等于三角形三个内角的和等于180.ABC中,中,A+B+C=180.A+B+C=180的几种变形的几种变形:A=180(B+C).).B=180 (A+C).).C=180(A+B).).A+B=180C.B+C=180A.A+C=180B.这里的结论,以后可以直接运用这里的结论,以后可以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形内角和定理 三角形 内角 定理 课件
限制150内