2022中考八班级上册数学学问点.docx
《2022中考八班级上册数学学问点.docx》由会员分享,可在线阅读,更多相关《2022中考八班级上册数学学问点.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022中考八班级上册数学学问点 同学是数学学习的仆人,老师是数学学习的组织者、引导者与合。学好数学还是离不开同学自己本身,接下来我在这里给大家共享一些关于八班级上册数学学问点,供大家学习和参考,盼望对大家有所关心。 八班级上册数学学问点 【篇一】 1全等三角形的对应边、对应角相等 2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 5边边边公理(SSS)有三边对应相等的两个三角形全等 6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角
2、形全等 7定理1在角的平分线上的点到这个角的两边的距离相等 8定理2到一个角的两边的距离相同的点,在这个角的平分线上 9角的平分线是到角的两边距离相等的全部点的集合 10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 11推论1等腰三角形顶角的平分线平分底边并且垂直于底边 12等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合 13推论3等边三角形的各角都相等,并且每一个角都等于60 14等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 15推论1三个角都相等的三角形是等边三角形 16推论2有一个角等于60的等腰三角形是等边三角形 1
3、7在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半 18直角三角形斜边上的中线等于斜边上的一半 19定理线段垂直平分线上的点和这条线段两个端点的距离相等 20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 21线段的垂直平分线可看作和线段两端点距离相等的全部点的集合 22定理1关于某条直线对称的两个图形是全等形 23定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 24定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 25逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 2
4、6勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 27勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 28定理四边形的内角和等于360 29四边形的外角和等于360 30多边形内角和定理n边形的内角的和等于(n-2)180 31推论任意多边的外角和等于360 32平行四边形性质定理1平行四边形的对角相等 33平行四边形性质定理2平行四边形的对边相等 34推论夹在两条平行线间的平行线段相等 35平行四边形性质定理3平行四边形的对角线相互平分 36平行四边形判定定理1两组对角分别相等的四边形是平行四边形 37平行四边形
5、判定定理2两组对边分别相等的四边形是平行四边形 38平行四边形判定定理3对角线相互平分的四边形是平行四边形 39平行四边形判定定理4一组对边平行相等的四边形是平行四边形 40矩形性质定理1矩形的四个角都是直角 41矩形性质定理2矩形的对角线相等 42矩形判定定理1有三个角是直角的四边形是矩形 43矩形判定定理2对角线相等的平行四边形是矩形 44菱形性质定理1菱形的四条边都相等 45菱形性质定理2菱形的对角线相互垂直,并且每一条对角线平分一组对角 46菱形面积=对角线乘积的一半,即S=(ab)2 47菱形判定定理1四边都相等的四边形是菱形 48菱形判定定理2对角线相互垂直的平行四边形是菱形 49
6、正方形性质定理1正方形的四个角都是直角,四条边都相等 50正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角 51定理1关于中心对称的两个图形是全等的 52定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 53逆定理假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 54等腰梯形性质定理等腰梯形在同一底上的两个角相等 55等腰梯形的两条对角线相等 56等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 57对角线相等的梯形是等腰梯形 58平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么
7、在其他直线上截得的线段也相等 59推论1经过梯形一腰的中点与底平行的直线,必平分另一腰 60推论2经过三角形一边的中点与另一边平行的直线,必平分第三边 61三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 62梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh 【篇二】 一、轴对称图形 1.把一个图形沿着一条直线折叠,假如直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2.把一个图形沿着某一条直线折叠,假如它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条
8、直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区分与联系 4.轴对称的性质 关于某直线对称的两个图形是全等形。 假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 假如两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 二、线段的垂直平分线 1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上 三、用坐标表示轴对称小
9、结: 1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等. 2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 四、(等腰三角形)学问点回顾 1.等腰三角形的性质 .等腰三角形的两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一) 2、等腰三角形的判定:假如一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 五、(等边三角形)学问点回顾 1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。 2、等边三角形的判定: 三个角都
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 中考 班级 上册 数学 学问
限制150内