《五班级下册苏教版数学重点学问点.docx》由会员分享,可在线阅读,更多相关《五班级下册苏教版数学重点学问点.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、五班级下册苏教版数学重点学问点 数学中的一些漂亮定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐蔽的极深。接下来我在这里给大家共享一些关于五班级下册苏教版数学重点学问点,供大家学习和参考,盼望对大家有所关心。 五班级下册苏教版数学重点学问点 一、图形的变换 图形变换的基本方式是平移、对称和旋转。 1、轴对称:假如一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。 (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形 等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称
2、轴,任意梯形和平行四边形不是轴对称图形。 (2)圆有很多条对称轴。 (3)对称点到对称轴的距离相等。 (4)轴对称图形的特征和性质: 对应点到对称轴的距离相等; 对应点的连线与对称轴垂直; 对称轴两边的图形大小、外形完全相同。 对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。 2、旋转:在平面内,一个图形围着一个顶点旋转肯定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。 (1)生活中的旋转:电风扇、车轮、纸风车 (2)旋转要明确绕点,角度和方向。 (3)长方形绕中点旋转180度与原来重合,正
3、方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。 旋转的性质: (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动; (2)其中对应点到旋转中心的距离相等; (3)旋转前后图形的大小和外形没有转变; (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角; (5)旋转中心是不动的点。 3、对称和旋转的画法:旋转要留意:顺时针、逆时针、度数 二、因数和倍数 1、整除:被除数、除数和商都是自然数,并且没有余数。 整数与自然数的关系:整数包括自然数。 2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 例:12是6的倍数,
4、6是12的因数。 (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。 (2)一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。 一个数的因数的求法:成对地按挨次找。 (3)一个数的倍数的个数是无限的,最小的倍数是它本身。 一个数的倍数的求法:依次乘以自然数。 (4)2、3、5的倍数特征 1) 个位上是0,2,4,6,8的数都是2的倍数。 2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。 3)个位上是0或5的数,是5的倍数。 4)能同时被2、3、5整除(也就是2、3、5的倍数)的的两位数是90,最小的三位数是120。 同时满意2
5、、3、5的倍数,实际是求235=30的倍数。 5)假如一个数同时是2和5的倍数,那它的个位上的数字肯定是0。 3、自然数按能不能被2整除来分:奇数、偶数。 自 奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。 然 数 偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。 最小的奇数是1,最小的偶数是0. 关系: 奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。 5、自然数按因数的个数来分:质数、合数、1三类. 质数(或素数):只有1和它本身两个因数。 合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)
6、。 1: 只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,最小的合数是4,连续的两个质数是2、3。 每个合数都可以由几个质数相乘得到,质数相乘肯定得合数。 20以内的质数:有8个(2、3、5、7、11、13、17、19) 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97 100以内找质数、合数的技巧: 看是否是2、3、5、7、11、13的倍数,是的就是合数,不是的就是质数。 关系: 奇数奇数=奇数 质数质数=合数 6、最小 A的最小因数是:1; A的因数是:A;
7、 A的最小倍数是:A; 最小的奇数是:1; 最小的偶数是:0;最小的质数是:2;最小的合数是:4; 最小的自然数是:0; 7、分解质因数:把一个合数分解成多个质数相乘的形式。 用短除法分解质因数 (一个合数写成几个质数相乘的形式)。 比如:30分解质因数是:(30=235) 8、互质数:公因数只有1的两个数,叫做互质数。 两个质数的互质数:5和7 两个合数的互质数:8和9 一质一合的互质数:7和8 两数互质的特别状况: 1和任何自然数互质;相邻两个自然数互质; 两个质数肯定互质; 2和全部奇数互质; 质数与比它小的合数互质; 9、公因数、公因数 几个数公有的因数叫这些数的公因数。其中的那个就叫
8、它们的公因数。 用短除法求两个数或三个数的公因数 (除到互质为止,把全部的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。 假如两数是倍数关系时,那么较小的数就是它们的公因数。 假如两数互质时,那么1就是它们的公因数。 10、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 用短除法求两个数的最小公倍数(除到互质为止,把全部的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把全部的除数和商连乘起来) 假如两数是倍数关系时,那么较大的数就是它们的最小公倍数。 假如两数互质时,那么它们的积就是它们的最小公倍数。 11、求公因数和
9、最小公倍数方法 用12和16来举例 1、 求法一:(列举求同法) 公因数的求法: 12的因数有:1、12、2、6、3、4 16的因数有:1、16、2、8、4 公因数是4 最小公倍数的求法: 12的倍数有:12、24、36、48、 16的倍数有:16、32、48、 最小公倍数是48 2、求法二:(分解质因数法) 12=223 16=2222 公因数是:22=4 (相同乘) 最小公倍数是:22 322= 48 (相同乘 不同乘) 三 长方体和正方体 1、由6个长方形(特别状况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度
10、分别叫做长方体的长、宽、高。 长方体特点: (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。 (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。 2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。 正方体特点: (1)正方体有12条棱,它们的长度都相等。 (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。 (3)正方体可以说是长、宽、高都相等的长方体,它是一种特别的长方体。 相同点 不同点 面 棱 长方体 都有6个面, 12条棱, 8个顶点。 6个面都是长方形。 (有可能有两个相对的面是正方形)。 相对的棱
11、的长度都相等 正方体 6个面都是正方形。 12条棱都相等。 3、长方体、正方体有关棱长计算公式: 长方体的棱长总和=(长+宽+高)4=长4+宽4+高4 L=(a+b+h)4 长=棱长总和4-宽 -高 a=L4-b-h 宽=棱长总和4-长 -高 b=L4-a-h 高=棱长总和4-长 -宽 h=L4-a-b 正方体的棱长总和=棱长12 L=a12 正方体的棱长=棱长总和12 a=L12 4、长方体或正方体6个面和总面积叫做它的表面积。 长方体的表面积=(长宽+长高+宽高)2 S=2(ab+ah+bh) 无底(或无盖)长方体表面积= 长宽+(长高+宽高)2 S=2(ab+ah+bh)-ab S=2(
12、ah+bh)+ab 无底又无盖长方体表面积=(长高+宽高)2 S=2(ah+bh) 贴墙纸 正方体的表面积=棱长棱长6 S=aa6 用字母表示: S= 6a2 生活实际: 油箱、罐头盒等都是6个面 游泳池、鱼缸等都只有5个面 水管、烟囱等都只有4个面。 留意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加) 留意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。 (如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。 5、物体所占空间的大小叫做物体的体积。 长方体的体积=长宽高 V=abh 长=体积宽高 a=Vbh 宽=体积长高 b=Vah 高=体积长宽 h= V
13、ab 正方体的体积=棱长棱长棱长 V=aaa= a3读作“a的立方”表示3个a相乘,(即aaa) 长方体或正方体底面的面积叫做底面积。 长方体(或正方体)的体积=底面积高 用字母表示:V=S h (横截面积相当于底面积,长相当于高)。 留意:一个长方体和一个正方体的棱长总和相等,但体积不肯定相等。 6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。 固体一般就用体积单位,计量液体的体积,如水、油等。 常用的容积单位有升和毫升也可以写成L和ml。 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 (1 L = 1 dm3 1 ml = 1 cm3) 长方体或正方体容器容积的计
14、算方法,跟体积的计算方法相同。 但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。) 留意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。 (如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。 _状不规章的物体可以用排水法求体积,外形规章的物体可以用公式直接求体积。 排水法的公式:V物体 =V现在-V原来 也可以 V物体 =S(h现在- h原来) V物体 =Sh上升 8、【体积单位换算】 率 大单位转换成小单位 进率 小单位转换成大单位 进率:1立方米=1000立方分米=1000000立方厘米 (立方相邻单位进率1000) 1立方分米=1000立方厘米=1
15、升=1000毫升 1立方厘米=1毫升 1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米 留意:长方体与正方体关系 把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。 重量单位进率,时间单位进率,长度单位进率 率 【单位换算】 大单位 小单位 进率 小单位 大单位 长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 (相邻单位进率10) 面积单位:1平方千米=100公顷 1平方米=100平方分米 1平方分米=100平方厘米 1公顷=10000平方米
16、 (平方相邻单位进率100) 质量单位:1吨=1000千克 1千克=1000克 人民币:1元=10角 1角=10分 1元=100分 四 分数的意义和性质 1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。 2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。) 3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。 4、分数与除法 AB=(B0,除数不能为0,分母也不能够为0) 例如: 45= 5、真分数和假分数、带分数 1、真分数:分子比分母小的分数叫
17、真分数。真分数1。 2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数1 3、带分数:带分数由整数和真分数组成的分数。带分数1. 4、真分数1假分数 真分数1带分数 6、假分数与整数、带分数的互化 (1)假分数化为整数或带分数,用分子分母,商作为整数,余数作为分子, 如: =105=2 =215=4 (2)整数化为假分数,用整数乘以分母得分子 如: 2= 24=8 (8作分子) (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如: 5= 55+1=26 (4)1等于任何分子和分母相同的分数。如: 1= 7、分数的基本性质: 分数的分子和分母同时乘以或除
18、以相同的数(0除外),分数的大小不变。 8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。 一个最简分数,假如分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不行以。 9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如: 11、分数和小数的互化 (1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100 如:0.3= 0.03= 0.003= (2)分数化为小数: 方法一:把分数化为分母是10、100、1000 如:=0.3 =0.6 =0.25
19、方法二:用分子分母 如:=34=0.75 (3)带分数化为小数: 先把整数后的分数化为小数,再加上整数 如:2=2+0.3=2.3 12、比分数的大小: 分母相同,分子大,分数就大; 分子相同,分母小,分数才大。 分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。 13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。 14、两个数互质的特别推断方法: 1和任何大于1的自然数互质。 2和任何奇数都是互质数。 相邻的两个自然数是互质数。 相邻的两个奇数互质。 不相同的两个质数互质。 当一个数是合数,另一个数是质数时(除了合数是质数的倍数状况下),一般状况下这两个数也都是互质
20、数。 15、求公因数的方法: 倍数关系: 公因数就是较小数。 互质关系: 公因数就是1 一般关系: 从大到小看较小数的因数是否是较大数的因数。 16、分数学问图解: 分数的产生 分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份。 分数与除法 :分子(被除数),分母(除数),分数值(商)。 真分数 真分数小于1 真分数与假分数 假分数 假分数大于1或等于1 带分(整数部分和真分数) 假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子) 分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数, 分数的基本性质 分数的大小不变。 通分、通分子:化成分母不同,大小不变的
21、分数(通分) 公因数 约 分 求公因数 最简分数 分子分母互质的分数(最简真分数、最简假分数) 约分及其方法 最小公倍数 通 分 求最小公倍数 分数比大小 (通分、通分子、化成小数) 通分及其方法 小数化分数 小数化成分母是10、100、1000的分数再化简 分数和小数的互化 分数化小数 分子除以分母,除不尽的取近似值 五 分数的加法和减法 (1)同分母分数加、减法 (分母不变,分子相加减) 1、分数数的加法和减法 (2) 异分母分数加、减法 (通分后再加减) (3) 分数加减混合运算:同整数。 (4) 结果要是最简分数 2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的
22、结果合并起来。 附:详细解释 (一)同分母分数加、减法 1、同分母分数加、减法: 同分母分数相加、减,分母不变,只把分子相加减。 2、计算的结果,能约分的要约成最简分数。 (二)异分母分数加、减法 1、分母不同,也就是分数单位不同,不能直接相加、减。 2、异分母分数的加减法: 异分母分数相加、减,要先通分,再根据同分母分数加减法的方法进行计算。 (三)分数加减混合运算 1、分数加减混合运算的运算挨次与整数加减混合运算的挨次相同。 在一个算式中,假如有括号,应先算括号里面的,再算括号外面的;假如只含有同一级运算,应从左到右依次计算。 2、整数加法的交换律、结合律对分数加法同样适用。 六 统计与数
23、学广角 众数 一组数据中出现次数最多的数叫众数。 众数能够反映一组数据的集中状况。 统计 在一组数据中,众数可能不止一个,也可能没有众数。 复式折线统计图 综合应用 打电话的方案 1、众数: 一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。 众数能够反映一组数据的集中状况。 在一组数据中,众数可能不止一个,也可能没有众数。 2、中位数:(1)按大小排列; (2)假如数据的个数是单数,那么最中间的那个数就是中位数; (3)假如数据的个数是双数,那么最中间的那两个数的平均数就是中位数。 3、平均数的求法:总数总份数=平均数 4、一组数据的一般水平: (1)当一组数据中没有偏大偏小的数,
24、也没有个别数据多次出现,用平均数表示一般水平。 (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。 (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。 4、平均数、中位数和众数的联系与区分: 平均数: 一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。 简单受极端数据的影响,表示一组数据的平均状况。 中位数: 将一组数据按大小挨次排列,处在最中间位置的一个数叫做这组数据的中位数 。 它不受极端数据的影响,表示一组数据的一般状况。 众数: 在一组数据中出现次数最多的数叫做这组数据的众数。 它不受极端数据的影响,表示一组数据的集中状况。 5、统计图:我们学过条形统
25、计图、复式折线统计图。 条形统计图优点:条形统计图能形象地反映出数量的多少。 折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化状况。 注: 画图时留意:一“点”(描点)、 二“连”(连线) 三“标”(标数据)。 要用不同的线段分别连接两组数据中的数。 6、 打电话:规律人人不闲着,每人都在传。(技巧:已知人数依次 2) (1)逐个法:所需时间最多。 (2)分组法:相对节省时间。 (3)同时进行法:最节省时间。 七 数学广角 用天平找次品规律: 1、把全部物品尽可能平均地分成3份,(如余1则放入到最终一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数肯定最少。
26、2、数目与测试的次数的关系:23个物体,保证能找出次品需要测的次数是1次 49个物体,保证能找出次品需要测的次数是2次 1027个物体,保证能找出次品需要测的次数是3次 2881个物体,保证能找出次品需要测的次数是4次 82243个物体,保证能找出次品需要测的次数是5次 244729个物体,保证能找出次品需要测的次数是6次 3、找次品规律 1 2 3 4 5 次数 3 33 333 3333 33333 3 9 27 81 243 次品个数 五班级下册苏教版数学学习方法 养成良好的学习数学习惯 多质疑、勤思索、好动手、重归纳、留意应用。同学在学习数学的过程中,要把老师所传授的学问翻译成为自己的
27、特别语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、用心上课、准时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 准时了解、把握常用的数学思想和方法 中学数学学习要重点把握的的数学思想有以上几个:集合与对应思想,分类争论思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要把握详细的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在详细的方法中,常用的有:观看与试验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特别,有限与无限,抽象与概括等。 逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠
28、自己主动的思维活动去猎取的。学习数学肯定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特殊是对概念理解的不同侧面和数学规律,老师在课堂中拓展的课外学问。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 要建立数学纠错本。把平常简单出现错误的学问或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深化理解正确东西;能由果朔因把错误缘由弄个水落石出、以便对症下药;解答问题完整、推理严密。 五班级下册苏教版数学学习技巧 学会看题 高中比学校有更多的相关材料。高考是全.关注的问题。因此,在高中的实践尤其多,
29、一些同学购买更多的材料。因此,如何利用主题来把握我们学习的学问,扩大我们所学的学问是学习的关键。我认为我们应当看更多的话题,更多的思索,看看解决材料中问题的方法,思索方法中的缘由,这样我们就可以从更多的方法中学习。 有许多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键学问,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。 课后巩固 许多同学在课后的学习过程中不注意巩固,只是觉得课堂上的一些学问就足够了,其实这是错误的。高中数学学问丰富,不像学校数学那么简洁,却有着丰富的内涵。假如它不能进一步挖掘,那么它只是把握这些学问的表面。因此,我不知道如何理解,也不能使用这些学问时,我做我的练习。 做练习是必要的,但有些同学只是做练习,而不是巩固这些学问,把学问扩展到做练习,常常是在练习完成后完成练习。这和中学问题没有什么区分。事实上,我们也应当把在这个练习中使用的学问联系起来,这样我们才能理解正在使用的学问,并且能够把握更多的学问。也可以发觉学问点是关键,也可以发觉如何链接相关学问的难题。 五班级下册苏教版数学重点学问点
限制150内