《高二数学必背学问点归纳.docx》由会员分享,可在线阅读,更多相关《高二数学必背学问点归纳.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学必背学问点归纳 在学习新学问的同时还要复习以前的旧学问,确定会累,所以要留意劳逸结合。只有充足的精力才能迎接新的挑战,才会有事半功倍的学习。下面就是我给大家带来的高二数学学问点总结,盼望能关心到大家! 高二数学学问点总结1 1、学会三视图的分析: 2、斜二测画法应留意的地方: (1)在已知图形中取相互垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使xoy=45(或135);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图肯定不是90度. 3、表(侧)面积与体积公式: 柱体:表面积:S=S侧+2S底;侧面积:S
2、侧=;体积:V=S底h 锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h: 台体表面积:S=S侧+S上底S下底侧面积:S侧= 球体:表面积:S=;体积:V= 4、位置关系的证明(主要方法):留意立体几何证明的书写 (1)直线与平面平行:线线平行线面平行;面面平行线面平行。 (2)平面与平面平行:线面平行面面平行。 (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线 5、求角:(步骤-.找或作角;.求角) 异面直线所成角的求法:平移法:平移直线,构造三角形; 直线与平面所成的角:直线与射影所成的角 高二数学学问点总结2 异面直线定义:不同在任何一个平
3、面内的两条直线 异面直线性质:既不平行,又不相交. 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线相互垂直. 求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上.B、证明作出的角即为所求角C、利用三角形来求角 (7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补. (8)空间直线与平面之间的位置关系 直线在平面内有很多
4、个公共点. 三种位置关系的符号表示:aa=Aa (9)平面与平面之间的位置关系:平行没有公共点; 相交有一条公共直线.=b 2、空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 线线平行线面平行 线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行.线面平行线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)假如一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行面面平行), (2)假如在两个平面内,各有两组相
5、交直线对应平行,那么这两个平面平行. (线线平行面面平行), (3)垂直于同一条直线的两个平面平行, 高二数学学问点总结3 等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。 面积公式 若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积: S=ab/2。 且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为: S=ch/2=c2/4。 等腰直角三角形是一种特别的三角形,具有全部三角形的性质:稳定性,两直角边相等直角边夹始终角锐角45,斜边上中线角平分线垂线三线合一。 高二数学学问点总结4 (1)必定大事:在条件S
6、下,肯定会发生的大事,叫相对于条件S的必定大事; (2)不行能大事:在条件S下,肯定不会发生的大事,叫相对于条件S的不行能大事; (3)确定大事:必定大事和不行能大事统称为相对于条件S的确定大事; (4)随机大事:在条件S下可能发生也可能不发生的大事,叫相对于条件S的随机大事; (5)频数与频率:在相同的条件S下重复n次试验,观看某一大事A是否出现,称n次试验中大事A出现的次数nA为大事A出现的频数;称大事A出现的比例fn(A)=nnA为大事A出现的概率:对于给定的随机大事A,假如随着试验次数的增加,大事A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为大事A的概率。 (6)
7、频率与概率的区分与联系:随机大事的频率,指此大事发生的次数nA与试验总次数n的比值nnA,它具有肯定的稳定性,总在某个常数四周摇摆,且随着试验次数的不断增多,这种摇摆幅度越来越小。我们把这个常数叫做随机大事的概率,概率从数量上反映了随机大事发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个大事的概率。 高二数学学问点总结5 简洁随机抽样 1.总体和样本 在统计学中,把讨论对象的全体叫做总体. 把每个讨论对象叫做个体. 把总体中个体的总数叫做总体容量. 为了讨论总体的有关性质,一般从总体中随机抽取一部分: 讨论,我们称它为样本.其中个体的个数称为样本容量. 2.简洁随机抽样,也叫纯
8、随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无肯定的关联性和排斥性。简洁随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。 3.简洁随机抽样常用的方法: 抽签法;随机数表法;计算机模拟法;使用统计软件直接抽取。 在简洁随机抽样的样本容量设计中,主要考虑:总体变异状况;允许误差范围;概率保证程度。 4.抽签法: (1)给调查对象群体中的每一个对象编号; (2)预备抽签的工具,实施抽签 (3)对样本中的每一个个体进行测量或调查 例:请调查
9、你所在的学校的同学做喜爱的体育活动状况。 5.随机数表法: 例:利用随机数表在所在的班级中抽取10位同学参与某项活动。 系统抽样 1.系统抽样(等距抽样或机械抽样): 把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本采纳简洁随机抽样的方法抽取。 K(抽样距离)=N(总体规模)/n(样本规模) 前提条件:总体中个体的排列对于讨论的变量来说,应是随机的,即不存在某种与讨论变量相关的规章分布。可以在调查允许的条件下,从不同的样本开头抽样,对比几次样本的特点。假如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。 2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。由于它对抽样框的要求较低,实施也比较简洁。更为重要的是,假如有某种与调查指标相关的帮助变量可供使用,总体单元按帮助变量的大小挨次排队的话,使用系统抽样可以大大提高估量精度。 高二数学必背学问点归纳
限制150内