中考数学九班级学问点.docx
《中考数学九班级学问点.docx》由会员分享,可在线阅读,更多相关《中考数学九班级学问点.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考数学九班级学问点 数学是一种理性的精神,使人类的思维得以运用到最完善的程度,学好数学有助于我们用规律的思维看待世界,接下来我在这里给大家共享一些关于中考数学九班级学问点,供大家学习和参考,盼望对大家有所关心。 中考数学九班级学问点 第一章 实数 一、 重要概念 1.数的分类及概念 数系表: 说明:分类的原则:1)相称(不重、不漏) 2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: 定义及表示法 性质:A.a1/a(a1);B.1/a中,a0;C.01;a1时,1/a1;D.积为1。 4.相反数: 定义及表示法 性质:A.
2、a0时,a-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:定义(三要素) 作用:A.直观地比较实数的大小;B.明确体现肯定值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数-自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.肯定值:定义(两种): 代数定义: 几何定义:数a的肯定值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 a0,符号是非负数的标志;数a的肯定值只有一个;处理任何类型的题目,只要其中有出现,其关键一步是去掉符号。 二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个-加法
3、乘法交换律、结合律;乘法对加法的 安排律) 3. 运算挨次:A.高级运算到低级运算;B.(同级运算)从左 到右(如5 5);C.(有括号时)由小到中到大。 三、 应用举例(略) 附:典型例题 1. 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b =b-a. 2.已知:a-b=-2且ab0,(a0,b0),推断a、b的符号。 其次章 代数式 重点代数式的有关概念及性质,代数式的运算 内容提要 一、 重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除
4、、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:依据除式中有否字母,将整式和分式区分开;依据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从形状来看。如, =x, =x等。 4.系数与指数 区分与联系:从位置上看;从表示的意义上看 5.同类项及其合并 条件:字母相同;相同字母的指数相同
5、 合并依据:乘法安排律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 留意:从形状上推断;区分: 、 是根式,但不是无理式(是无理数)。 7.算术平方根 正数a的正的平方根( a0-与平方根的区分); 算术平方根与肯定值 联系:都是非负数, =a 区分:a中,a为一切实数; 中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满意条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 ( -幂,乘方运算) a0时, 0
6、;a0时, 0(n是偶数), 0(n是奇数) 零指数: =1(a0) 负整指数: =1/ (a0,p是正整数) 二、 运算定律、性质、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 基本性质: = (m0) 符号法则: 繁分式:定义;化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质: o = ; = ; = ; = ; 技巧: 5.乘法法则:单单;单多;多多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (ab) = 7.除法法则:单单;多单。 8.因式分解:定义;方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法
7、。 9.算术根的性质: = ; ; (a0,b0); (a0,b0)(正用、逆用) 10.根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A. ;B. ;C. . 11.科学记数法: (1a10,n是整数= 三、 应用举例(略) 四、 数式综合运算(略) 第三章 统计初步 重点 内容提要 一、 重要概念 1.总体:考察对象的全体。 2.个体:总体中每一个考察对象。 3.样本:从总体中抽出的一部分个体。 4.样本容量:样本中个体的数目。 5.众数:一组数据中,出现次数最多的数据。 6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
8、 二、 计算方法 1.样本平均数: ;若 , , ,则 (a-常数, , , 接近较整的常数a);加权平均数: ;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估量总体平均数,样本容量越大,估量越精确。 2.样本方差: ;若 , , ,则 (a-接近 、 、 的平均数的较整的常数);若 、 、 较小较整,则 ;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差特别接近总体方差,通常用样本方差去估量总体方差。 3.样本标准差: 三、 应用举例(略) 第四章 直线形 重点相交线与平行线、三角形、四边形的有关概念、判定、性质。 内容提要 一、 直线、相交
9、线、平行线 1.线段、射线、直线三者的区分与联系 从图形、表示法、界限、端点个数、基本性质等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边) 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区分与联系) 11.常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。 12.定义、命题、命
10、题的组成 13.公理、定理 14.逆命题 二、 三角形 分类:按边分; 按角分 1.定义(包括内、外角) 2.三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中, 3.三角形的主要线段 争论:定义线的交点-三角形的心性质 高线中线角平分线中垂线中位线 一般三角形特别三角形:直角三角形、等腰三角形、等边三角形 4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特别三角形全等的判定:一般方法专用
11、方法 6.三角形的面积 一般计算公式性质:等底等高的三角形面积相等。 7.重要帮助线 中点配中点构成中位线;加倍中线;添加帮助平行线 8.证明方法 直接证法:综合法、分析法 间接证法-反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来 三、 四边形 分类表: 1.一般性质(角) 内角和:360 顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线相互垂直的四边形各边中点得矩形。 外角和:360 2.特别四边形 讨论它们的一般方法: 平行四边形
12、、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形- 对角线的纽带作用: 3.对称图形 轴对称(定义及性质);中心对称(定义及性质) 4.有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离到处相等。(如,找下图中面积相等的三角形) 5.重要帮助线:常连结四边形的对角线;梯形中常平移一腰、平移对角线、作高、连结顶点和对腰中点并延长与底边相交转化为三角形。 6.作图:任意等分线段。 四、 应用举例(略) 第五章 方程(组) 重点一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特殊是行程、工程问题) 内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 班级 学问
限制150内