《221条件概率.pptx》由会员分享,可在线阅读,更多相关《221条件概率.pptx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(2 2)有限有限性性(1 1)等可等可能性能性1 1、古典概型:、古典概型:一、一、概率的两种模型概率的两种模型(2 2)无无限限性性(1 1)等可等可能性能性2 2、几何概型:、几何概型:(1)互斥事件互斥事件事件事件A与事件与事件B在任何一次试验中都不会同时发生在任何一次试验中都不会同时发生AB如图:如图:(2)互为对立事件互为对立事件AB如图:如图:事件事件A与与B在任何一次试验中有且仅有一个发生在任何一次试验中有且仅有一个发生(3)并事件(和事件)并事件(和事件)B A如图:如图:(4)交事件(积事件)交事件(积事件)B A如图:如图:三张奖券中只有一张能中奖,现分三张奖券中只有一张
2、能中奖,现分别由别由3名同学无放回地抽取,问最后名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比一名同学抽到中奖奖券的概率是否比前两位小?前两位小?“最后一名同学抽到中奖奖券最后一名同学抽到中奖奖券”为事件为事件B解:设解:设 三张奖券为三张奖券为 ,其中,其中Y表示中奖表示中奖奖券且奖券且 为所有结果组成的全体,为所有结果组成的全体,“最后一名同最后一名同学中奖学中奖”为事件为事件B,则所研究的样本空间则所研究的样本空间 一般地,我们用一般地,我们用W W来来表示所有基本事件表示所有基本事件的集合,叫做的集合,叫做基本基本事件空间事件空间(或样本或样本空间空间)一般地,一般地,n(
3、B)表示表示事件事件B包含的基本包含的基本事件的个数事件的个数如果已经知道第一名同学没有抽到中奖如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券奖券,那么最后一名同学抽到中奖奖券的概率又是多少?的概率又是多少?分析:分析:可设可设”第一名同学没有中奖第一名同学没有中奖”为事件为事件A由由古典概型古典概型概率公式,所求概率为概率公式,所求概率为“第一名同学没有抽到中奖奖券第一名同学没有抽到中奖奖券”为事件为事件A“最后一名同学抽到中奖奖券最后一名同学抽到中奖奖券”为事件为事件B第一名同学没有抽到中奖奖券的条件下,最后一名第一名同学没有抽到中奖奖券的条件下,最后一名同学抽到中奖
4、奖券的概率记为同学抽到中奖奖券的概率记为P(B|A)12(通常适用古典概率模型通常适用古典概率模型)(适用于一般的概率模型适用于一般的概率模型)一般地一般地,设,为两个事件设,为两个事件,且且(A),称称为在事件为在事件A发生的条件下,事件发生的条件下,事件B发生的发生的条件概率条件概率 1 1、定义、定义条件概率条件概率 Conditional Probability一般把一般把 P(BA)读作)读作 A 发生的条件下发生的条件下 B 的概率。的概率。2.条件概率计算公式条件概率计算公式:P(B|A)相当于把看作新的相当于把看作新的基本事件空间求基本事件空间求发生的发生的概率概率概率概率 P
5、(B|A)与与P(AB)的区别与联系的区别与联系联系联系:事件:事件A,B都发生了都发生了 区别:区别:(1)在)在P(B|A)中,事件中,事件A,B发生有时间上的差异,发生有时间上的差异,A先先B后;在后;在P(AB)中,事件)中,事件A,B同时发生。同时发生。(2)样本空间不同,在)样本空间不同,在P(B|A)中,事件中,事件A成为样本成为样本空间;在空间;在P(AB)中,样本空间仍为)中,样本空间仍为 。因而有因而有 在在5 5道题中有道题中有3 3道理科题和道理科题和2 2道文科题。道文科题。如果不放回地依次抽取如果不放回地依次抽取2 2道题,求:道题,求:(1)第第1次抽到理科题的概
6、率;次抽到理科题的概率;(2)第第1次和第次和第2次都抽到理科题的概率;次都抽到理科题的概率;(3)在第在第1次抽到理科题的条件下,第次抽到理科题的条件下,第2次抽到理科题的概率。次抽到理科题的概率。例例1 1解:解:设“第1次抽到理科题”为事件A,“第2次抽到理科题”为事件B,则“第1次和第2次都抽到理科题”就是事件AB.为“从5道题中不放回地依次抽取2道题的样本空间。”求解条件概率的一般步骤:求解条件概率的一般步骤:反思反思求解条件概率的一般步骤:求解条件概率的一般步骤:(1)用字母表示有关事件)用字母表示有关事件(2)求)求P(AB),),P(A)或或n(AB),n(A)(3)利用条件概
7、率公式求利用条件概率公式求在某次外交谈判中,中外双方都为了自身的利益在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定颗骰子决定,若若已知已知出现点数不超过出现点数不超过3 3的的条件下条件下再再出现点数为奇数则按对方的决议处理,否则按中出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?方的决议处理,假如你在现场,你会如何抉择?B=B=出现的点数是奇数出现的点数是奇数 ,设设A=A=出现的点数不超过出现的点数不超过33,只需求事件只需求事件 A A 发生的条件下,发生的条件下
8、,事件事件 B B 的概率即(的概率即(B BA A)5 52 21 13 34,64,6解法一解法一(减缩样本空间法)(减缩样本空间法)例题例题2解解1:在某次外交谈判中,中外双方都为了自身的利益在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定颗骰子决定,若若已知已知出现点数不超过出现点数不超过3 3的的条件下条件下再再出现点数为奇数则按对方的决议处理,否则按中出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?方的决议处理,假如你在现场,你会如何抉择?B=B=出现的点数是
9、奇数出现的点数是奇数 ,设设A=A=出现的点数不超过出现的点数不超过33,只需求事件只需求事件 A A 发生的条件下,发生的条件下,事件事件 B B 的概率即(的概率即(B BA A)5 52 21 13 34,64,6例题例题2解解2:由条件概率定义得:由条件概率定义得:解法二解法二(条件概率定义法)(条件概率定义法)例例 3 设设 100 件产品中有件产品中有 70 件一等品,件一等品,25 件二等品,件二等品,规定一、二等品为合格品从中任取规定一、二等品为合格品从中任取1 件,求件,求(1)取得取得一等品的概率;一等品的概率;(2)已知取得的是合格品,求它是一等已知取得的是合格品,求它是
10、一等品的概率品的概率 解解设设B表示取得一等品,表示取得一等品,A表示取得合格品,则表示取得合格品,则(1)因为因为100 件产品中有件产品中有 70 件一等品,件一等品,(2)方法方法1:方法方法2:因为因为95 件合格品中有件合格品中有 70 件一等品,所以件一等品,所以707095955 5例例4、一张储蓄卡的密码共有、一张储蓄卡的密码共有6位数字,每位数字都可位数字,每位数字都可从从09中任选一个,某人在银行自动提款机上取钱时,中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过)任意按最后一位数字,不超过2
11、次就按对的概率;次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过)如果他记得密码的最后一位是偶数,不超过2次次 就按对的概率。就按对的概率。例例4、一张储蓄卡的密码共有、一张储蓄卡的密码共有6位数字,每位数字都可位数字,每位数字都可从从09中任选一个,某人在银行自动提款机上取钱时,中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过)任意按最后一位数字,不超过2次就按对的概率;次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过)如果他记得密码的最后一位是偶数,不超过2次次 就按对的概率。就按对的
12、概率。课堂练习课堂练习1.甲乙两地都位于长江下游,根据一百多年的气象甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为记录,知道甲乙两地一年中雨天所占的比例分别为20和和18,两地同时下雨的比例为,两地同时下雨的比例为12,问:,问:(1)乙地为雨天时甲地也为雨天的概率是多少?)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?)甲地为雨天时乙地也为雨天的概率是多少?解:设解:设A=甲地为雨天甲地为雨天,B=乙地为雨天乙地为雨天,则则P(A)=20%,P(B)=18%,P(AB)=12%,2.厂别厂别甲厂甲厂乙厂乙厂合计合计数
13、量数量等级等级合格品合格品次次 品品合合 计计 一批同型号产品由甲、乙两厂生产,产品结构如一批同型号产品由甲、乙两厂生产,产品结构如下表:下表:(1)从这批产品中随意地取一件,则这件产品恰好是)从这批产品中随意地取一件,则这件产品恰好是 次品的概率是次品的概率是_;(2)在已知取出的产品是甲厂生产的,则这件产品恰好)在已知取出的产品是甲厂生产的,则这件产品恰好 是次品的概率是是次品的概率是_;3.3.掷两颗均匀骰子掷两颗均匀骰子,已知已知第一颗掷出第一颗掷出6 6点点条件下条件下,问问“掷出点数之和不小于掷出点数之和不小于1010”的概率是多少的概率是多少?解解:设设A=掷出点数之和不小于掷出
14、点数之和不小于10,10,B=第一颗掷出第一颗掷出6 6点点 4.4.一盒子装有一盒子装有4 4 只产品只产品,其中有其中有3 3 只一等品只一等品,1,1只二等品只二等品.从中取产品两次从中取产品两次,每次任取一只每次任取一只,作不放回抽样作不放回抽样.设事件设事件A为为“第一次取到的是一等品第一次取到的是一等品”,事件事件B 为为“第二次取第二次取到的是一等品到的是一等品”,试求条件概率试求条件概率P(B|A).).解解由条件概率的公式得由条件概率的公式得5、A、B是两事是两事件,已件,已知知P(A)=0.3,P(B)=0.8,P(B|A)=0.8,求求P(B|A)6,六,六人分别担任六种
15、不同的工人分别担任六种不同的工作作,已已知甲不担任第一个工作,则任意分工知甲不担任第一个工作,则任意分工时,求乙没有担任第二个工作的概率。时,求乙没有担任第二个工作的概率。1.条件概率的定义条件概率的定义.课堂小结课堂小结2.条件概率的性质条件概率的性质.3.条件概率的计算方法条件概率的计算方法.(1)减缩样本空间法)减缩样本空间法(2)条件概率定义法)条件概率定义法送给同学们一段话:送给同学们一段话:在概率的世界里充满着和我们直觉截然不在概率的世界里充满着和我们直觉截然不同的事物。面对表象同学们要坚持实事求同的事物。面对表象同学们要坚持实事求是的态度、锲而不舍的精神。尽管我们的是的态度、锲而不舍的精神。尽管我们的学习生活充满艰辛,但我相信只要同学们学习生活充满艰辛,但我相信只要同学们不断进取、挑战自我,我们一定会达到成不断进取、挑战自我,我们一定会达到成功的彼岸!功的彼岸!
限制150内