11分类加法计数原理和分步乘法计数原理(1).ppt
《11分类加法计数原理和分步乘法计数原理(1).ppt》由会员分享,可在线阅读,更多相关《11分类加法计数原理和分步乘法计数原理(1).ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1分类计数原理分类计数原理与分步计数原理分步计数原理 2008年年29届夏季奥运会在北京举行奥运届夏季奥运会在北京举行奥运会足球赛共有个队参赛它们先分成个会足球赛共有个队参赛它们先分成个小组进行循环赛,决出强,这个队按确定小组进行循环赛,决出强,这个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名问一共安排了多少场还决出了第三、第四名问一共安排了多少场比赛?比赛?实际问题实际问题 要回答这个问题,就要用到排列、组合的知要回答这个问题,就要用到排列、组合的知识识在运用排列、组合方法时,经常要用到在运用排列、组合方法时,经常要用到分类
2、分类分类分类计数原理与分步计数原理计数原理与分步计数原理计数原理与分步计数原理计数原理与分步计数原理 用一个大写的的英文字母用一个大写的的英文字母或或一个阿拉伯一个阿拉伯数字给教室里的座位编号,总共能够编出多数字给教室里的座位编号,总共能够编出多少种不同的号码?少种不同的号码?问题问题 1问题问题 2.从甲地到乙地,可以乘火车,也从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火可以乘汽车,还可以乘轮船。一天中,火车有车有4 班班,汽车有汽车有2班,轮船有班,轮船有3班。那么一班。那么一天中乘坐这些交通工具从甲地到乙地共有天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法多少种
3、不同的走法?分析分析:从甲地到乙地有从甲地到乙地有3类方法类方法,第一类方法第一类方法,乘火车,有乘火车,有4种方法种方法;第二类方法第二类方法,乘汽车,有乘汽车,有2种方法种方法;第三类方法第三类方法,乘轮船乘轮船,有有3种方法种方法;所以所以 从甲地到乙地共有从甲地到乙地共有 4+2+3=9 种方法。种方法。一、分类计数原理一、分类计数原理一、分类计数原理一、分类计数原理 完成一件事,有两类办法完成一件事,有两类办法.在第在第1类办法中有类办法中有m种不同的方法,在第种不同的方法,在第2类方法中有类方法中有n种不同的方种不同的方法,则完成这件事共有法,则完成这件事共有 2)首先要根据具体的
4、问题确定一个分类标准,在分)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立)各类办法之间相互独立,都能独立的完成这件事,都能独立的完成这件事,要计算方法种数要计算方法种数,只需将各类方法数相加只需将各类方法数相加,因此分类计因此分类计数原理又称数原理又称加法原理加法原理说明说明说明说明N=m+n种不同的方法种不同的方法问题问题3 3、用前用前6 6个大写英文字母和个大写英文字母和1 19 9九个阿拉九个阿拉伯数字,以伯数字,以A A1 1,A A2 2,B B1 1,B B2 2,的方式给教室里的座位
5、编号,总共能编出多的方式给教室里的座位编号,总共能编出多少个不同的号码?少个不同的号码?字母字母数字数字得到的号码得到的号码A A123456789A1A2A3A4A5A6A7A8A9树形图树形图二、分步计数原理二、分步计数原理二、分步计数原理二、分步计数原理 完成一件事,需要两个步骤。做第完成一件事,需要两个步骤。做第1步有步有m种不种不同的方法,做第同的方法,做第2步有步有n种不同的方法,则完成这件事种不同的方法,则完成这件事共有共有 2)首先要根据具体问题的特点确定一个分步的标准,)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数然后对每步方法计数.1)各个步骤相互依存)各
6、个步骤相互依存,只有各个步骤都完成了只有各个步骤都完成了,这件事这件事才算完成才算完成,将各个步骤的方法数相乘得到完成这件事的将各个步骤的方法数相乘得到完成这件事的方法总数方法总数,又称又称乘法原理乘法原理说明说明说明说明N=mn种不同的方法种不同的方法 加法原理加法原理 乘法原理乘法原理联系联系区别一区别一完成一件事情共有完成一件事情共有n类类办法,关键词是办法,关键词是“分类分类”完成一件事情完成一件事情,共分共分n个个步骤,关键词是步骤,关键词是“分步分步”区别二区别二每类办法都能每类办法都能独立完成独立完成这件事情。这件事情。每一步得到的只是中间结果,每一步得到的只是中间结果,任何一步
7、都任何一步都不能能独立完成不能能独立完成这件事情这件事情,缺少任何一步也,缺少任何一步也不能完成这件事情,只有每不能完成这件事情,只有每个步骤完成了,才能完成这个步骤完成了,才能完成这件事情。件事情。分类计数原理和分步计数原理,回答的都是关于分类计数原理和分步计数原理,回答的都是关于完成一件事情的不同方法的种数的问题。完成一件事情的不同方法的种数的问题。区别三区别三各类办法是互斥的、各类办法是互斥的、并列的、独立的并列的、独立的各步之间是相关联的各步之间是相关联的分类计数与分步计数原理的区别和联系:分类计数与分步计数原理的区别和联系:例例1在填写高考志愿表时,一名高中毕业生了解到在填写高考志愿
8、表时,一名高中毕业生了解到A、B两两所大学各有一些自己感兴趣的强项专业,具体情况如下:所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学大学B大学大学生物学生物学化学化学医学医学物理学物理学工程学工程学数学数学会计学会计学信息技术学信息技术学法学法学如果这名同学只能选一个专业,那么他共有多少种选择呢?如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学在解:这名同学在A大学中有大学中有5种专业选择,在种专业选择,在B大学中有大学中有4种专业选择。种专业选择。根据分类计数原理:这名同学可能的专业选择共有根据分类计数原理:这名同学可能的专业选择共有5+49种。种。例例2、设某班有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 11 分类 加法 计数 原理 分步 乘法
限制150内