111平面直角坐标系与曲线方程 (2)(教育精品).ppt
《111平面直角坐标系与曲线方程 (2)(教育精品).ppt》由会员分享,可在线阅读,更多相关《111平面直角坐标系与曲线方程 (2)(教育精品).ppt(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、教学目标教学目标 n理解并能运用曲线的方程、方程的曲线的概念,建立“数”与“形”的桥梁,培养学生数形结合的意识n教学重点教学重点:求曲线的方程n教学难点教学难点:掌握用直接法、代入法、交轨法等求曲线方程的方法坐标平面上的点和有序数对建立了一一对应的关系.代数代数有序数对有序数对 几何几何 点点点、曲线、坐标、方程间的关系点、曲线、坐标、方程间的关系n几何几何 代数代数n点点 点的坐标即有序实数对点的坐标即有序实数对(x,y)(x,y)按按规规律律的的运运动动受受某某关关系系的的制制约约 曲线曲线C C 二元二元方程方程?研究与讨论:研究与讨论:(1)在直线坐标系中,方程在直线坐标系中,方程 与
2、曲线:与曲线:一三象限角平分线的关系是什么?一三象限角平分线的关系是什么?答:满足方程答:满足方程 的的 点点 在一三象限的在一三象限的 角平分线上,在一三象限角平分线上,在一三象限 角平分线上的点同时也满角平分线上的点同时也满 足方程足方程 研究与讨论:研究与讨论:(2)过点)过点A(2,0)平行于平行于 轴的直线轴的直线 与方与方 程的关系是什么?程的关系是什么?答:过答:过A(2,0)平行于平行于 的的 直线直线 上的点上的点 满足满足 方程方程 ;但满足;但满足 方程方程 的点不一定的点不一定 在直线在直线 上。上。研究与讨论:研究与讨论:(3)到两坐标轴的距离相等的点的轨迹与方程:)
3、到两坐标轴的距离相等的点的轨迹与方程:的关系是什么?的关系是什么?答:到两坐标轴的距离相等答:到两坐标轴的距离相等 的点的点 不一定满足方程不一定满足方程 ;但满足方程;但满足方程 的点的点 一定在曲线上。一定在曲线上。(到两坐标轴的距离相等)(到两坐标轴的距离相等)问题与讨论:问题:问题:对于曲线对于曲线C与方程与方程 的关系可能有哪几种情形?的关系可能有哪几种情形?情形情形1 1:在曲线在曲线C C上的点上的点 满足方程满足方程 ,同时,以方程同时,以方程 的解为坐标的点的解为坐标的点 在曲线在曲线 C C 上。上。情形情形2 2:在曲线:在曲线C C上的点上的点 满足方程满足方程 ;但以
4、方程;但以方程 的解为坐的解为坐 标的点标的点 不一定在曲线不一定在曲线 C C 上。上。情形情形3 3:在曲线在曲线C C上的点上的点 不一定满足方程不一定满足方程 ;但以方程;但以方程 的解为坐的解为坐 标的点标的点 在曲线在曲线 C C 上。上。情形情形4 4:曲线曲线C C上的点上的点 与以方程与以方程 的解为坐标的点的解为坐标的点 没有必然的没有必然的 联系。联系。1 1、方程的曲线定义:、方程的曲线定义:一般地在直角坐标系中,如果某曲线一般地在直角坐标系中,如果某曲线C C (看作适合某种条件的点的集合或轨迹)上看作适合某种条件的点的集合或轨迹)上 的点与一个二元方程的点与一个二元
5、方程 的实数解建立了如下的关系:的实数解建立了如下的关系:(1 1)曲线)曲线C C上的点的坐标都是这个方程上的点的坐标都是这个方程f(x,y)=0f(x,y)=0的解的解;(2 2)以这个方程)以这个方程f(x,y)=0的解为坐标的点的解为坐标的点都是曲线上的点都是曲线上的点.那么这个方程叫那么这个方程叫做曲线的方程做曲线的方程;这条曲线;这条曲线 叫做叫做方程的曲线方程的曲线。对曲线的方程定义的理解:(1 1)命题)命题1 1说明,曲线上没有坐标不满足方说明,曲线上没有坐标不满足方 程的点,也就是说曲线上所有的点都适程的点,也就是说曲线上所有的点都适 合这个条件而毫无例外(合这个条件而毫无
6、例外(纯粹性纯粹性)(2 2)命题)命题2 2说明,适合条件的所有点都在曲说明,适合条件的所有点都在曲 线上而毫无遗漏(线上而毫无遗漏(完备性完备性)(3 3)这两个命题是)这两个命题是互逆互逆的命题,并不是等价的命题,并不是等价 的命题,因而在的命题,因而在证明某方程是曲线的方证明某方程是曲线的方 程时必须分别予以证明程时必须分别予以证明。练习A1.下面给出的下面给出的 方程方程F与曲线与曲线C中中,其中的曲线其中的曲线 是方程的曲线的是是方程的曲线的是:()曲曲线线方方程程C 练习练习A A2.下面给出的下面给出的 方程方程F与曲线与曲线C中中,其中的曲线是其中的曲线是 否为方程的曲线否为
7、方程的曲线?为什么为什么?方程方程F:;曲线曲线C:方程方程F:曲线曲线C:答答:不是不是.因为还有满足方程的点因为还有满足方程的点没有在曲线上没有在曲线上.答答:是是.因为曲线的方程的两因为曲线的方程的两个命题都成立个命题都成立.练习A.如图如图:方程方程 表示的曲线的是表示的曲线的是:()练习B1.证明证明:以坐标原点为圆心以坐标原点为圆心,半径为半径为5 5的圆的的圆的 方程是方程是:,:,并判断点并判断点:与与 是否在这个圆上是否在这个圆上.分析分析:应该如何证明某曲线是一个方程的曲线应该如何证明某曲线是一个方程的曲线?应该证明关于方程的曲线的两个命题都成立应该证明关于方程的曲线的两个
8、命题都成立.如果点如果点 在方程为在方程为 的曲线的曲线 上上,则则sinsin=_=_ 练习练习B证明证明:证明证明:1.设设M(xM(x0 0,y,y0 0 )是圆上任意一点是圆上任意一点.因为点因为点M到坐到坐标原点的距离等于标原点的距离等于5,所以所以 也就是也就是:即即:M(xM(x0 0,y,y0 0 )是方程是方程 的解的解.2.设设M(xM(x0 0,y,y0 0 )是方程是方程 的解的解,那么那么:两边开方取算术根两边开方取算术根,得得:即点即点M(xM(x0 0,y,y0 0 )到坐标原点的距离等于到坐标原点的距离等于,点点M(xM(x0 0,y,y0 0 )是这个圆上的点
9、是这个圆上的点.由由1、2可知,可知,是以坐标原点为圆心,半径等于是以坐标原点为圆心,半径等于5的圆的方程。的圆的方程。练习练习B:点是否在曲线上的检验点是否在曲线上的检验:把点把点M1(3,-4)的坐标代入方程的坐标代入方程左右两边相等左右两边相等,(3,-4)是方程的解是方程的解,所以点所以点M1在这个圆上在这个圆上;左右两边不等左右两边不等,不是方程的解不是方程的解,所以所以M2不在不在这个圆上这个圆上.要点要点:1.1.掌握证明方程是某曲线的方程的方法掌握证明方程是某曲线的方程的方法:要证明两个命题都成立要证明两个命题都成立.2.2.检验点是否在曲线上的方法检验点是否在曲线上的方法:点
10、的坐标是点的坐标是否适合曲线的方程否适合曲线的方程.把把M2的坐标代入方程的坐标代入方程 ,练习.如果点如果点 在方程为在方程为 的曲线的曲线 上上,则则sinsin=_=_ 解解:因为点在曲线上因为点在曲线上,所以点的坐标适合方程所以点的坐标适合方程.所以所以:我们在必修课和选修我们在必修课和选修1-11-1中学中学习过一些曲线的方程。阅读课本习过一些曲线的方程。阅读课本P P3 3.如何求曲线的方程?如何求曲线的方程?2 2、求曲线方程的一般步骤:、求曲线方程的一般步骤:1.建系设标:建系设标:2.建立适当的坐标系,用建立适当的坐标系,用 M(x,y)表示曲线上任意一表示曲线上任意一点点;
11、.列式列式:(列出限制条件列出限制条件)写出满足条件写出满足条件p的点的集合的点的集合P=|p(M);.代入:代入:用坐标表示条件用坐标表示条件p(M),列出方程,列出方程 f(x,y)=0;4.化简:化简:化方程为最简形式;化方程为最简形式;.证明:证明:证明以化简后的方程的解为坐标的点都是曲线证明以化简后的方程的解为坐标的点都是曲线上的点。上的点。(习惯上加以补充说明,习惯上加以补充说明,查缺补漏查缺补漏)说明:说明:一般情况下一般情况下,化简前后方程的解集是相同的化简前后方程的解集是相同的,步骤步骤(5)可以省略不写可以省略不写,如有特殊情况如有特殊情况,可适当予以说明可适当予以说明.另
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 111平面直角坐标系与曲线方程 2教育精品 111 平面 直角 坐标系 曲线 方程 教育 精品
限制150内