2018版高中数学平面向量2.5.2向量在物理中的应用举例导学案新人教A版必修4含解析.pdf
《2018版高中数学平面向量2.5.2向量在物理中的应用举例导学案新人教A版必修4含解析.pdf》由会员分享,可在线阅读,更多相关《2018版高中数学平面向量2.5.2向量在物理中的应用举例导学案新人教A版必修4含解析.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.5.2 向量在物理中的应用举例学习目标1.经历用向量方法解决某些简单的力学问题与其他一些实际问题的过程.2.体会向量是一种处理物理问题的重要工具.3.培养运用向量知识解决物理问题的能力.知识点一向量的线性运算在物理中的应用思考 1 向量与力有什么相同点和不同点?答案向量是既有大小又有方向的量,它们可以有共同的作用点,也可以没有共同的作用点,但是力却是既有大小,又有方向且作用于同一作用点的.思考 2 向量的运算与速度、加速度与位移有什么联系?答案速度、加速度与位移的合成与分解,实质上是向量的加减法运算,而运动的叠加也用到向量的合成.梳理(1)用向量解决力的问题,通常把向量的起点平移到同一个作
2、用点上.(2)向量在解决涉及速度、位移等物理量的合成与分解时,实质就是向量的线性运算.知识点二向量的数量积在物理中的应用思考向量的数量积与功有什么联系?答案物理上力做功的实质是力在物体前进方向上的分力与物体位移的乘积,它的实质是向量的数量积.梳理物理上力的做功就是力在物体前进方向上的分力与物体位移的乘积,即W|F|s|cos F,s,功是一个实数,它可正可负,也可以为零.力的做功涉及两个向量及这两个向量的夹角,它的实质是向量F与s的数量积.知识点三向量方法解决物理问题的步骤用向量理论讨论物理学中的相关问题,一般来说分为四个步骤:(1)问题转化,即把物理问题转化为数学问题;(2)建立模型,即建立
3、以向量为载体的数学模型;(3)求解参数,即求向量的模、夹角、数量积等;(4)回答问题,即把所得的数学结论回归到物理问题.类型一向量的线性运算在物理中的应用例 1(1)在重 300 N的物体上系两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为 30,60(如图),求重物平衡时,两根绳子拉力的大小.解如图,两根绳子的拉力之和OAOBOC,且|OC|OG|300 N,AOC30,BOC60.在OAC中,ACOBOC60,AOC30,则OAC90,从而|OA|OC|cos 30 1503(N),|AC|OC|sin 30 150(N),所以|OB|AC|150(N).答与铅垂线成30角的绳子的
4、拉力是1503 N,与铅垂线成60角的绳子的拉力是150 N.(2)帆船比赛是借助风帆推动船只在规定距离内竞速的一项水上运动,如果一帆船所受的风力方向为北偏东30,速度为20 km/h,此时水的流向是正东,流速为20 km/h.若不考虑其他因素,求帆船的速度与方向.解建立如图所示的平面直角坐标系,风的方向为北偏东30,速度为|v1|20(km/h),水流的方向为正东,速度为|v2|20(km/h),设帆船行驶的速度为v,则vv1v2.由题意,可得向量v1(20cos 60,20sin 60)(10,103),向量v2(20,0),则帆船的行驶速度为vv1v2(10,103)(20,0)(30,
5、103),所以|v|302 1032203(km/h).因为 tan 1033033(为v和v2的夹角,且为锐角),所以30,所以帆船向北偏东60的方向行驶,速度为203 km/h.反思与感悟利用向量法解决物理问题有两种思路,第一种是几何法,选取适当的基底,将题中涉及的向量用基底表示,利用向量运算法则,运算律或性质计算.第二种是坐标法,通过建立平面直角坐标系,实现向量的坐标化,转化为代数运算.跟踪训练 1 河水自西向东流动的速度为10 km/h,小船自南岸沿正北方向航行,小船在静水中的速度为103 km/h,求小船的实际航行速度.解设a,b分别表示水流的速度和小船在静水中的速度,过平面内一点O
6、作OAa,OBb,以OA,OB为邻边作矩形OACB,连接OC,如图,则OCab,并且OC即为小船的实际航行速度.|OC|ab2a2b220(km/h),tan AOC103103,AOC60,小船的实际航行速度为20 km/h,按北偏东30的方向航行.类型二向量的数量积在物理中的应用例 2 已知两恒力F1(3,4),F2(6,5)作用于同一质点,使之由点A(20,15)移动到点B(7,0).(1)求力F1,F2分别对质点所做的功;(2)求力F1,F2的合力F对质点所做的功.解(1)AB(7,0)(20,15)(13,15),W1F1AB(3,4)(13,15)3(13)4(15)99,W2F2
7、AB(6,5)(13,15)6(13)(5)(15)3.力F1,F2对质点所做的功分别为99 和 3.(2)WFAB(F1F2)AB(3,4)(6,5)(13,15)(9,1)(13,15)9(13)(1)(15)11715 102.合力F对质点所做的功为102.反思与感悟物理上的功实质上就是力与位移两矢量的数量积.跟踪训练2 一个物体受到同一平面内的三个力F1,F2,F3的作用,沿北偏东45的方向移动了 8 m,其中|F1|2 N,方向为北偏东30,|F2|4 N,方向为北偏东60,|F3|6 N,方向为北偏西30,求合力F所做的功.解以O为原点,正东方向为x轴的正方向建立平面直角坐标系,如
8、图所示.则F1(1,3),F2(23,2),F3(3,33),所以FF1F2F3(232,2 43).又因为位移s(42,42),所以合力F所做的功为WFs(232)42(2 43)424263246(J).即合力F所做的功为246 J.1.用两条成120角的等长的绳子悬挂一个灯具,如图所示,已知灯具重10 N,则每根绳子的拉力大小为_ N.答案10 解析设重力为G,每根绳的拉力分别为F1,F2,则由题意得F1,F2与G都成 60角,且|F1|F2|.|F1|F2|G|10 N,每根绳子的拉力都为10 N.2.已知一个物体在大小为6 N 的力F的作用下产生的位移s的大小为100 m,且F与s的
9、夹角为 60,则力F所做的功W_ J.答案300 解析WFs|F|s|cos F,s6100cos 60 300(J).3.一条河宽为800 m,一船从A处出发垂直到达河正对岸的B处,船速为20 km/h,水速为12 km/h,则船到达B处所需时间为 _ min.答案3 解析v实际v船v水v1v2,|v1|20 km/h,|v2|12 km/h,|v|v1|2|v2|220212216(km/h).所需时间t0.8160.05(h)3(min).该船到达B处所需的时间为3 min.4.一艘船从南岸出发,向北岸横渡.根据测量,这一天水流速度为3 km/h,方向正东,风的方向为北偏西30,受风力影
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高中数学 平面 向量 2.5 物理 中的 应用 举例 导学案 新人 必修 解析
限制150内