《(压轴题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测卷(答案解析).pdf》由会员分享,可在线阅读,更多相关《(压轴题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测卷(答案解析).pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(压轴题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测卷(答案解析)一、选择题1某小学有6 个年级,每个年级有8 个班。一天放学,8 位小朋友一起走出校门。那么,下列说法中,正确的是()。A.他们中至少有2 人出生月份相同 B.他们中至少有2 人是同一年级的C.他们中至少有2 人生肖属相相同 D.他们中至少有2 人是同一班级的2任意 5 个自然数的和是偶数,则其中至少有()个偶数。A.1 B.2 C.33袋中有60 粒大小相同的弹珠,每15 粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出()粒才行。A.4 B.5 C.6 D.741000 只鸽子飞进50 个巢,无论怎么
2、飞,我们一定能找到一个含鸽子最多的巢,它里面至少有()只鸽子。A.20 B.21 C.22 D.23518 个小朋友中,()小朋友在同一个月出生。A.恰好有2 个B.至少有2 个C.有 7 个D.最多有7 个6从一幅扑克牌中抽出2 张王牌,在剩下的52 张中任意抽()张,才能保证有两张是相同花色的A.4 B.6 C.5 D.97小明参加飞镖比赛,投了10 镖,成绩是91 环,小明至少有一镖不低于()环A.8 B.9 C.108口袋里放有红、黄、白三种颜色的同样的钮扣各10 枚,至少取出()枚钮扣,才能保证三种颜色的钮扣都取到A.13 B.21 C.309把 17 个乒乓球装进4 个袋子里,总有
3、一个袋子至少要装()A.3 B.4 C.5 D.6105 只小鸟飞进两个笼子,至少有()只小鸟在同一个笼子里A.1 B.2 C.311袋子中有红、黄、蓝球各4 个,至少任意拿出()个球,才能保证某种颜色的球有 2 个A.3 B.4 C.5 D.71210 个孩子分进4 个班,则至少有一个班分到的学生人数不少于()个A.1 B.2 C.3 D.4二、填空题13 制作这样10 张卡片,至少要抽出_张卡片才能保证既有偶数又有奇数。14 李叔叔要给房间的四壁涂上不同的颜色,可不管怎么涂,总有两面墙壁的颜色是一致的。李叔叔的颜料最多有_种颜色。15从一副扑克牌(54 张)中抽出 _张来,才能保证一定有一
4、张是黑桃。16把红、黄、蓝三种颜色的球各5 个放到袋子里。从中至少取_个球,可以保证取到两个颜色相同的球。17 有红、黄、蓝、绿四种颜色的球各10 个,要保证取出的球有两个是同色的,至少要取出_个球;要保证取出的球有两个是不同色的,至少要取出_个球。18 幼儿园有3 种玩具各若干件,每个小朋友任意拿2 件不同种类的玩具,至少有_个小朋友来拿,才能保证有2 个小朋友拿的玩具相同。19有 4 双不同花色的手套,至少要拿出_只,才能保证有两只手套是一双。20从 7 个抽屉中拿出22 个苹果,无论怎样拿,总有一个抽屉中至少拿出了_个苹果。三、解答题21给一个正方体木块的6 个面分别涂上红、黄、蓝3 种
5、颜色。不论怎么涂至少有两个面涂的颜色相同。为什么?22一个口袋里分别有4 个红球,7 个黄球,8 个黑球,为保证取出的球中有6 个球颜色相同,则至少要取多少个小球?23能否在 10 行 10 列的方格表的每个空格中分别填上1,2,3 这三个数之一,使得大正方形的每行、每列及对角线上的10 个数字之和互不相同?对你的结论加以说明24有一个布袋中有40 个相同的小球,其中编上号码1、2、3、4 的各有10 个,问:一次至少要取出多少个小球,才能保证其中至少有3 个小球的号码相同?25三年级二班有名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?26 把十只小兔放进至
6、多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?【参考答案】*试卷处理标记,请不要删除一、选择题1B 解析:B 【解析】【解答】86=1(年级).2(人);1+1=2(人)。故答案为:B。【分析】8 位小朋友6 个年级,考虑最不利原则,6 个小朋友每人一个年级,余下的2 个小朋友,不管是哪个年级的,他们中至少有2 人是同一年级的。2A 解析:A 【解析】【解答】1 个偶数+4 个奇数=偶数;3 个偶数+2 个奇数=偶数;5 个偶数的和还是偶数;任意 5 个自然数的和是偶数,则其中至少有1 个偶数。故答案为:A。【分析】偶数+偶数=偶数,偶数+奇数=奇数,据此分析。3B 解析:B 【
7、解析】【解答】解:6015=4(种),4+1=5(粒)故答案为:B【分析】用60 除以 15 求出一共有4 种颜色,如果4 种颜色各取出1 粒,那么再取出1 粒无论是什么颜色都能保证有2 粒颜色相同,所以至少取出5 粒才行.4A 解析:A 【解析】【解答】解:100050=20(只)故答案为:A【分析】100050=20,从极端的情况考虑,假如每个巢里面的鸽子数都相等,都是20只,所以一定能找到一个含鸽子最多的巢,它里面至少有20 只鸽子.5B 解析:B 【解析】【解答】1812=16,1+1=2。答:至少有2 个小朋友在同一个月出生,最多18 个。故选:B。【分析】本题可根据抽屉原理进行理解
8、:12 个月为 12 个抽屉,18 个小朋友为18 个乒乓球 1812=16,1+1=2即 18 个小朋友中,至少有2 个小朋友在同一个月出生。6C 解析:C 【解析】【解答】解:建立抽屉,4 种花色看做4 个抽屉,考虑最差情况:摸出 4 张牌,都是不同花色的,那么此时再任意摸出1 张牌,都会出现2 张牌花色相同,4+1=5(张),答:至少抽取5 张才能保证有2 张牌花色相同故选:C【分析】建立抽屉,4 种花色看做4 个抽屉,52 张牌看做52 个元素,利用抽屉原理即可解答7C 解析:C 【解析】【解答】解:根据分析可得,91 10=9(环)1(环),9+1=10(环);答:小明至少有一镖不低
9、于10 环故选:C【分析】把10 镖看作 10 个抽屉,把91 环看作 91 个元素,那么每个抽屉需要放9110=9(个)1(个),所以每个抽屉需要放9 个元素,剩下的1 个再不论怎么放,总有一个抽屉里至少有:9+1=10(个),所以,小明至少有一镖不低于10 环;据此解答8B 解析:B 【解析】【解答】解:10+10+1=21(个)答:至少取出21 枚钮扣,才能保证三种颜色的钮扣都取到故选:B【分析】口袋里放有红、黄、白三种颜色的同样的钮扣,最差的情况是头10 个都是同一种颜色的比如红的,此时还剩下黄、白两种颜色的,接着拿了10 个还是同一种颜色的,比如黄的,此时口袋内只剩下白色的了,最后再
10、拿一个,三种颜色的钮扣都取到了,即至少要取出 10+10+1=21 个9C 解析:C 【解析】【解答】解:174=4个1个,4+1=5(个)即总有一个袋子至少要装5 个故选:C【分析】把17 个乒乓球装进4 个袋子里,将这4 个袋子当做4 个抽屉,174=4个1个,即平均每个袋子里装4 个后,还余下一个根据抽屉原理可知,总有一个袋子至少要装4+1=5 个10C 解析:C 【解析】【解答】解:52=2(只)1只,2+1=3(只)答,至少有3 只小鸟在同一个笼子里故选:C【分析】5 只小鸟飞进两个笼子,52=2(只)1 只,即当每个笼子里平均飞进两只时,还有一只在笼外,根据抽屉原理可知,至少有2+
11、1=3 只小鸟在同一个笼子里11B 解析:B 【解析】【解答】解:根据分析可得,3+1=4(个);答:至少任意拿出4 个球,才能保证某种颜色的球有2 个;故选:B【分析】把3 种不同颜色看作3 个抽屉,从最不利情况考虑,每个抽屉先放1 个球,共需要 3 个,再取出1 个不论是什么颜色,总有一个抽屉里的球和它同色,所以至少要取出:3+1=4(个),据此解答12C 解析:C 【解析】【解答】解:104=2(个)2人;2+1=3(人);故选:C【分析】10 个孩子分进4 个班,这里把班级个数看作“抽屉”,把孩子的个数看作“物体个数”,104=2(个)2人;所以至少有一个班分到的学生人数不少于2+1=
12、3(人);二、填空题13【解析】【解答】5+1=6(张)故答案为:6【分析】10 张卡片 5 张奇数 5张偶数考虑最不利原则抽出的5 张都是奇数那么只要在抽一张就能保证既有偶数又有奇数解析:【解析】【解答】5+1=6(张)。故答案为:6.【分析】10 张卡片,5 张奇数 5 张偶数,考虑最不利原则,抽出的5 张都是奇数,那么只要在抽一张,就能保证既有偶数又有奇数。14【解析】【解答】在3 个墙面上涂上甲乙丙3 种颜色没有重复但第4 面墙只能选甲乙丙中的一种至1 少有两面的颜色是一致的;所以得出颜料的种数是3 种故答案为:3【分析】本题可以用抽屉原理的最不利原则考虑解析:【解析】【解答】在3 个
13、墙面上涂上甲、乙、丙3 种颜色,没有重复,但第4 面墙只能选甲、乙、丙中的一种,至1 少有两面的颜色是一致的;所以得出颜料的种数是3种。故答案为:3.【分析】本题可以用抽屉原理的最不利原则考虑。15【解析】【解答】133+1+2=42(张)故答案为:42【分析】一副扑克牌4种花色加两个王抽出红桃方块梅花各13 张在加上 2 张大小王后只剩下黑桃了最后在抽一张黑桃就能保证一定有一张是黑桃解析:【解析】【解答】133+1+2=42(张)。故答案为:42.【分析】一副扑克牌4 种花色加两个王,抽出红桃,方块,梅花各13 张,在加上2 张大小王后,只剩下黑桃了,最后在抽一张黑桃,就能保证一定有一张是黑
14、桃。16【解析】【解答】3+1=4(个)故答案为:4【分析】有几种颜色的球前几次各取其中一个颜色那么再取任意一个就能保证有两种不同颜色解析:【解析】【解答】3+1=4(个).故答案为:4.【分析】有几种颜色的球,前几次各取其中一个颜色,那么再取任意一个就能保证有两种不同颜色。175;11【解析】【解答】4+1=5(个);10+1=11(个)故答案为:5;11【分析】根据抽屉原理分析最坏的情况即可得出结论解析:5;11【解析】【解答】4+1=5(个);10+1=11(个)故答案为:5;11。【分析】根据抽屉原理,分析最坏的情况即可得出结论。18【解析】【解答】3+1=4(个)故答案为:4【分析】
15、此题主要考查了抽屉原理的应用假设3 种玩具分别是 ABC任意拿两件不同种类的玩具有三种情况:ABACBC 如果只有 3 个小朋友可能拿的是3 种不同的玩具如果解析:【解析】【解答】3+1=4(个).故答案为:4.【分析】此题主要考查了抽屉原理的应用,假设3 种玩具分别是A、B、C,任意拿两件不同种类的玩具,有三种情况:AB、AC、BC,如果只有3 个小朋友,可能拿的是3 种不同的玩具,如果再来1 人,一定会出现有2 个小朋友拿的玩具相同,据此解答.19【解析】【解答】4+1=5(只)故答案为:5【分析】此题主要考查了抽屉原理的应用因为有4 双不同花色的手套假设只拿4 只可能每种花色各拿一只那么
16、再多拿一只一定会出现同色的所以至少拿出4+1=5只就能保证解析:【解析】【解答】4+1=5(只).故答案为:5.【分析】此题主要考查了抽屉原理的应用,因为有4 双不同花色的手套,假设只拿4 只,可能每种花色各拿一只,那么再多拿一只,一定会出现同色的,所以至少拿出4+1=5 只,就能保证有两只手套是一双,据此解答.20【解析】【解答】227=3(个)1(个)至少:3+1=4(个)故答案为:4【分析】抽屉原理的公式:a 个物体放入 n 个抽屉如果 an=bc那么有一个抽屉至少放(b+1)个物体据此解答解析:【解析】【解答】227=3(个)1(个),至少:3+1=4(个).故答案为:4.【分析】抽屉
17、原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.三、解答题21 答:给一个正方体木块的6 个面分别涂上红、黄、蓝3 种颜色,将3 种颜色看成抽屉,根据抽屋原理可知,不管怎么涂至少有两个面涂的颜色相同。【解析】【分析】红、黄、蓝3 种颜色分别涂一个面,剩下的三个面不管涂什么颜色,必定是这三种颜色中的一种,所以不论怎么涂都能保证至少有两个面涂的颜色相同。22 解:考虑最“坏”的情况,先取出4 个红球,5 个黄球,5 个黑球,这样再取一个(只能是黄球或黑球),将有6 个球颜色相同,所以至少要取出(个)小球【解析】【分析】三种颜色看作3 个抽屉,要
18、保证一个抽屉中至少有6 个苹果,最“坏”的情况是每个抽屉里有5 个“苹果”,红球的个数不足6 个,那么红球全部去到,剩下的每种颜色取 5 个,最后再加1 个即可。23 解:大正方形的每行、每列及对角线上的10 个数字之和最小是10,最大是30因为从 10 到 30 之间只有21 个互不相同的整数值,把这21 个互不相同的数值看作21 个“抽屉”,而 10 行、10 列及两条对角线上的数字和共有22 个整数值,这样元素的个数比抽屉的个数多1 个,根据抽屉原理可知,至少有两个和同属于一个抽屉,故要使大正方形的每行、每列及对角线上的10 个数字之和互不相同是不可能的【解析】【分析】因为用到的是这三个
19、数的和,所以10 个数字的和最小是10,最大是30,从 10 到 30 一共有 21 个数字,根据抽屉原理,不能满足要求。24 解:将1、2、3、4 四种号码看作4 个抽屉,要保证一个抽屉中至少有3 个苹果,最“坏”的情况是每个抽屉里有2 个“苹果”,共有:(个),再取1 个就能满足要求,所以一次至少要取出9 个小球,才能保证其中至少有3 个小球的号码相同【解析】【分析】将1、2、3、4 四种号码看作4 个抽屉,要保证一个抽屉中至少有3 个苹果,最“坏”的情况是每个抽屉里有2 个“苹果”,根据抽屉原理作答即可。25 解:把43 名同学当作43 个“抽屉”,课外书作为物品把课外书放在43 个抽屉中,要想保证至少有一个抽屉中有两本书,根据抽屉原理,书的数量必须大于学生的人数43,大于 43 的最小整数为43+1=44,因此,“图书角”至少要准备44 本课外书.【解析】【分析】考虑最不利的情况:只有一个同学借到到两本书,那么在同学人数的基础上加 1 即可。26 解:要想保证至少有一个笼里有两只或两只以上的小兔,把小兔子当作“物品”,把“笼子”当作“抽屉”,根据抽屉原理,要把10 只小兔放进10-1=9 个笼里,才能保证至少有一个笼里有两只或两只以上的小兔。【解析】【分析】考虑最不利的情况,就是只有一个笼子里有两只小兔,其他还是一只小兔,据此作答即可。
限制150内