《【精编】化工原理流体阻力实验报告北京化工大学.pdf》由会员分享,可在线阅读,更多相关《【精编】化工原理流体阻力实验报告北京化工大学.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、化工原理-流体阻力实验报告(北京化工大学)作者:日期:?北 京 化 工 大 学化 工 原 理 实验 报告实验名称:流体阻力实验班级:化工 35 班姓名:张玮航学号:201301132 序号:1同 组 人:宋雅楠、陈一帆、陈骏设备型号:流体阻力-泵联合实验装置UP型-第套实验日期:21 11-2一、实验摘要首先,本实验使用 US型第套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内 与雷诺数 Re 和相对粗糙度的函数。该实验结果可为管路实际应用和工艺设计
2、提供重要的参考。结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Blsui关系式:0.250.3163 Re。突然扩大管的局部阻力系数随Re的变化而变化。关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度二、实验目的1、掌握测定流体流动阻力实验的一般实验方法:测量湍流直管的阻力,确定摩擦阻力系数。测量湍流局部管道的阻力,确定摩擦阻力系数。测量层流直管的阻力,确定摩擦阻力系数。2、验证在湍流区内摩擦阻力系数 与雷诺数 e 以及相对粗糙度的关系。3、将实验所得光滑管的-Re 曲线关系与 Bsiu方程相比较。三、实验原理、直管阻力不可压缩流
3、体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。可表示为:uldfp,。通过一系列的数学过程推导,引入以下几个无量纲数群:雷诺数:Redu;相对
4、粗糙度:d;长径比:ld整理得到:2,pdulud d其中,令:Re,d为直管阻力系数,则有2Re,2pludd。阻力系数与压头损失之间的关系可通过实验测得,上式改写为:22fpluHd()(式中fH 直管阻力(J/g),l被测管长(m),d被测管内径(),u平均流速(m/),直管中的摩擦阻力系数。)根据机械能衡算方程,实验测量fH:2211221222efpupugzHgzH2211221222fepupuHgzgzH22epug zH()对于水平无变径直管道,结合式(1)与式()可得摩擦系数:测量22dpl u当流体在管径为 d 的圆形管中流动时选取两个截面,用 U 形压差计测出这两个截面
5、的压强差,即为流体流过两截面间的流动阻力。通过改变流速可测出不同e 下的摩擦阻力系数,这样便能得到某一相对粗糙度下的Re关系。其中,经过大量实验后人们发现:1、层流圆直管(Re4000):=0.13R053、湍 流 普 通 直 管(4000 e 临 界 点):(R ,/)即Re7.182log274.11d4、湍流普通直管(Re临界点):=(/)即d2log274.11将上述经验结果归纳为表1。表摩擦阻力系数与雷诺数关系Re020020040004 0Re临界点临界点以上(水力光滑管)Re640.250.3163ReBlasius0.250.3163ReBlasius(粗糙管)Re641218
6、.71.7421Regd121.7421gd直管段两端使用电子压差计来测量压差。对于任意一种流体,其直管摩擦系数 仅与 e 和有关。因此只要在实验室的小规模装置上利用水作实验物系,进行有限量的实验,就可以确定 与 Re和的关系,从而计算任意流体在管路中的流动阻力损失,这些结论就可以推广到工业生产实际中去。2、局部阻力流体的边界在局部地区发生急剧变化时,迫使主流脱离边壁而形成漩涡,流体质点间产生剧烈的碰撞,所形成的阻力称为局部阻力。局部阻力通常以当量长度法或局部阻力系数法表示。本实验中采用局部阻力系数法。当量长度法:流体通过阀门或管件的局部阻力损失,若与流体流过一定长度的相同管径的直管阻力相当,
7、则称这一直管长度为管件或阀门的当量长度,用符号el表示。在管路计算时,可求出管路与阀门的当量长度之和el。如所计算的管路长度为l,则流体在管路中流动的总阻力损失为:22udllhef局部阻力系数法:流体通过某一件阀门或管件的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法,即22uphe对于不同的阀门和管径变化,有着不同的局部阻力系数。局部阻力系数的大小归结为一个表中。见表2。表局部阻力系数与局部结构关系(e 000)结构突扩管截止阀球阀2121AA常数=常数在本实验中,由于管道是水平布置,则局部阻力系数计算式化简为:1222 ppu(无变径)和2122121pp
8、uu(有变径)(式中,p、p2分别为上下游截面压强差,u1、u2为两个管径内的平均流速,流体密度)四、实验流程和设备图 1流体阻力实验带控制点工艺流程1-水箱;2 水泵;3-涡轮流量计;-主管路切换阀;5层流管;6 截止阀;7球阀;8 不锈钢管;9-镀锌钢管;10-突扩管;11流量调节阀(闸阀)12-层流管流量阀(针阀)13-变频仪实验介质:水(循环使用)研究对象:不锈钢管,l=1.500,d=0.2;?镀锌管,l=.50m,d=0.021m;?突扩管,1=002m,d10.0,l=0.280m,d2.02;?截止阀,DN20,d=0.01;球阀,DN20,=0.01m;?层流管,=1500,
9、d=0003;仪器仪表:涡轮流量计,LWG2型,0 10m3/,精确度等级.5;?温度计,Pt100,200,精度等级 0.?压差传感器,WNK30 型,-200Pa,精度等级 0.显示仪表:AI-708 等,精度等级.1。变频仪:西门子 MM420 型。其他:计算机数据采集和处理,380V+220AC五、实验操作1、准备工作及通用操作:、开泵。打开各管路的切换阀门,关闭流量调节阀,按变频仪上绿色按钮启动泵,固定转速(f=0Hz),观察到泵出口表压力为0.2M左右时即可开始实验。、排气。排尽整个系统的气体,包括设备主管和测压管线中的气体。具体步骤为:全开压差传感器排气阀,打开流量调节阀11 数
10、十秒钟后再关闭,这时流量为零,等待一段时间,观察压差传感器指示读数是否为0(+00ka),否则,要重新排气。对于测压管线排气:打开全部测压阀、压差传感器排气阀,查看p 孔板。再次打开传感器排气阀,10 秒后关闭,重复多次至零点不变,记录 p 孔板。3、实验测取数据。打开镀锌管管路的切换阀和测压管线上的切换阀,其余管路的切换阀和测压管线上的切换阀都关闭。流量由大到小,测取数据。4、测量球阀和截止阀数据的方法同上。2、不锈钢管实验:1、打开传感排气阀并记录P。、打开不锈钢管测量管路切换阀,测压阀。3、打开流量调节阀从小到大调节流量,3.5m3/h 以上通过变频器调节,记录数据。3、镀锌管实验:1、
11、打开传感排气阀并记录P。2、打开镀锌管测量管路切换阀,测压阀。关闭其他切换阀、测压阀。3、打开流量调节阀从小到大调节流量,35/h 以上通过变频器调节,记录数据。4、球阀、截止阀实验:、打开传感排气阀并记录P。2、打开球阀、截止阀测量管路切换阀。关闭其他切换阀、测压阀。、打开球阀两端的测压阀。、打开流量调节阀从小到大调节流量,3/h 以上通过变频器调节,记录数据。5、关闭球阀两端测压阀,开启截止阀两端测压阀,重复上述过程,记录数据。5、层流管实验:、打开传感排气阀并记录P。2、降低水泵频率。、闭其他切换阀、测压阀。全开层流管流量阀。4、调节层流管路出口阀,改变管路压降,用量桶测量一定时间内流出
12、的液体量,并记录其重量。6、结束实验:关闭全部阀门,通过变频器关泵,关闭控制柜。切断电源,整理实验数据,清理实验台。六、实验数据表格及计算举例1、湍流 不锈钢管数据表 P0/kP lm/m/mm0.500 002 5.02序号水流量qv/3?-管路压降?/kP水温度t/水密度?m-3水粘度?/Pa?s水流速um?1雷诺数Re摩擦系数 bl sius.60 39 .99.0.00120.67 13 6 25 0.029 20.80.0.0 9 6.3 0.001020.84 17282 0.00.831.00.0 0.0 9.3.0100 1 2 23042 0.022.06.3.28 20.0
13、 99 0 00 20 131 68280.01 0.0255 61.7220.0 96.3.00020 1.60 918 0.090.023 00 2.56 0.0 9.3 0.1202.01 4117 0.010.022 72.503.7 0.0 9.3 0 001 20 2.5 50199.0.021 83.00 08 200 996.3 0 01020 3.17 012.017 0.0294009.00.0 996.30.0012 408278 6 0.9 10500 285 20996.0.002.80 9824 0.016 0.018 计算示例:以第一组为例1)流速32244 0.
14、600.463.14 0.02153600vqm sum sd2)雷诺数30.02150.46996.3Re9960.21.0210du3)摩擦系数220.02150.39 10000.024996.3 1.50.46dplu4)理论摩擦系数0.2540.31630.31630.032Re9646Blasius、湍流 镀锌管数据表 P0/kPalm/m mm0.00150.021.10 序号水流量?qvm3?h管路压降 p/a水温度?/水密度/kg?-3水粘度?/Pa?水流速u/m?s1雷诺数Re摩擦系数 las0.60.3 20.2 996.0001010.51251 0.21 .030 2
15、100 072 20.996.3 0.00104 0.77 1 50.7.231.29 0.96 20.3 996.3 0.0114099 2082.02.026 4.0 148 203 9.3 0.001014.2850 0.035 0.025200 2 020.3996.3 0.001011.53313 0.41 0.024 6248 3.362.4 960.001 121.90 0160.0 1 02273 0 742.996.3 0.00012.34581 0.0 90.01 83.97 7.99 204 96.3 0.0112.04 64280.0 6.29.9 12105 990.
16、01010 3.82 09920.0920.19 105.1 15.30 2.5 996.30.0001422 89430.104001计算示例:以第一组为例1)流速3224()40.760.583.140.02153600vq msum sd2)雷诺数30.02150.58996.3Re122161.017 10du3)摩擦系数220.02150.43 10000.021996.3 1.50.58dplu4)理论摩擦系数0.2540.31630.31630.030Re12251Blasius3、湍流 突扩管数据表P0/kPalmd1/ml/md2/mm0.00 0.000 00.0 0.20
17、0.02 序号水流量?qv/m3?h-1局部压降?2-1kPa水温度t水密度/kg?m-水粘度?Pa?s水流速1/m?s-1水流速2/m?-雷诺数Re1局部阻力?系数 理论值1.0.78 07 9960001 2.37 43400.870731 2583 05 22.97 175 2.99.1253 0.000054.11 0.5966099 0.875 0.31 3 2 3.00 20996.10003.0103 5.50.808314 0.881 31 5.00 5 1 09996043 0.0000 691.003 110093 0.872.731 计算示例:以第一组为例1)流速3122
18、1322224()4 1.982.743.140.016036004()4 1.980.3973.140.04203600vvqmsum sdq msum sd2)雷诺数1 1130.01602.74996.13Re43670.21.005 10d u3)局部阻力系数2222210.3970.78 1000 996.2110.8742.74upu4)理论局部阻力系数222221122220.0161110.7310.042AdAd4、湍流 截止阀(全开)P0/kad/m0 0 00205序号水流量qv/m3?h-局部压降p/kPa水温度/水密度/kg?m-水粘度/?s水流速u/m?s1雷诺数R
19、e局部阻力系数 1.98.22159 90.0087 1.673491.878 22.9921.75 21.99 0.00 802.5252084.81 4 0 3821.5 9.9100009873.69678.8计算示例:以第一组为例1)流速3224()4 1.981.673.140.02053600vqmsum sd2)雷诺数0.02051.67995.919Re345440.000987du3)局部阻力系数22229.52 10006.86995.921.67pu、湍流 球阀(全开)P0/kPad/0000.00 0.020 00 000序号水流量?v/m3?局部压降?p/kPa水温度
20、?t/水密度/kg?m 3水粘度/Pa?s水流速u/m?s雷诺数Re局部阻力系数 12.02 76 21695.90 00985 1.62 34410.58 2.99 1.54 195.9.09852.40 09330.54 33.98 261 21.6 9.90.009 5.19677970.51 计算示例:以第一组为例1)流速3224()42.021.623.140.0213600vq msum sd2)雷诺数40.021 1.62995.9Re343969.85 10du3)局部阻力系数22220.7610000.58995.9 1.62pu6、层流管数据表 P0 kPa l/m/0.0
21、 1.500 03序号水质量/g 时间/s 管路压降?k a 水温度?t水密度/g?-水粘度?/a?s水流速um?-1 雷诺数?Re 摩擦系数理论值17.00 0.28 .99.9 0.0090.05 149.46 422 3 7 50.00 0.522.0995.80.097.10 01 0.220 13 3 7.8 5.00 0.9224 995.0.00097 021 60.3 0.01 4 8 5000 1.40 23.4995.4.000945 0.880.03 0073135.001.924.2 995.2 0.00029 0.38 230 52 00526 1995500.99
22、25.0 995.0 0.000913 0.561847.038 005 计算示例:以第一组为例1)流量317.4()36001.26()995.9()50()vmgqL htkg mg Ls2)流速3224()4 1.260.0503.140.0033600 1000vq msum sd3)雷诺数0.00300.05995.9Re1510.000985du4)摩擦系数22220.00300.28 10000.45995.91.50.05dplu5)理论摩擦系数64640.43Re151七、实验结果作图及分析进行数据处理后利用Exl 软件进行关系曲线的绘制,得到结果如下:1、对光滑管与粗糙管的
23、实验结果分析:对于光滑管,实验数值的阻力摩擦系数应大略微于等于理论值。通过实验测出的光滑管(不锈钢管)的 -R关系曲线与 lasius理论得出的曲线在临界值之前十分接近,仅仅是略微较低于理论值。这说明了Blasis 公式在 Re=400至临界值区间上与实际情况吻合得较好。当雷诺数继续增大后,阻力系数逐渐趋近于一个定值,此时实验曲线开始偏离理论曲线。即实验结果产生了微小偏差,产生这种偏差的原因很可能是读数时压力波动有不稳定的情况,而我们在读取压力时进行了折中取值。0.010.11100100010000100000摩擦系数雷诺准数 Re摩擦系数 随雷诺数 Re的变化关系不锈钢管镀锌管层流管bla
24、sius理论值层流管理论值对于粗糙管(镀锌管),其 Re 关系曲线形态与光滑管大体相似,在雷诺数Re 相同时,实验数值的阻力摩擦系数比光滑管的大,其间的曲线关系应该位于理论值曲线的上方。粗糙管内的摩擦阻力系数不仅随雷诺数的变化而变化,其大小还与管道的相对粗糙度有直接关系。此外,粗糙管的 -Re 关系曲线与理论曲线偏离明显,这说明 Blsiu公式对水力光滑管更加适用,而不适用于粗糙管。结论:光滑管与粗糙管的摩擦阻力系数均随雷诺数Re 的增大而减小,当 R增大到一定程度时,有一临界值,逐渐趋于一个定值。此后的流动可以认为进入了阻力平方区。2、对层流管的实验结果分析:?对于层流管,在流速较低时(层流
25、区内),数据点在大体落在理论曲线附近,呈线性分布,这表明实验结果与理论结果高度吻合。但随着流速增加,曲线较理论线有向下偏离,这与测量过程中的误差有一定关系。改进办法:延长测量流量的时间,并且在每次改变流速后多稳定一段时间,让管内流动更趋近于稳态来提高测量的稳定性。3、对突扩管的实验结果分析对于突扩管,在雷诺数相同时,局部阻力系数的实验数值大于理论值,且能够根据本实验结果得出不同流速下(湍流),突扩管的局部阻力系数大体相同的结论。局部阻力系数的实验数值大于理论值的情况,很可能是由于局部件长时间使用后有一定程度的损耗造成的。但对于一定状态下的同一种局部件,其局部阻力基本为定值。4、对球阀与截止阀的
26、实验结果分析?从实验数据上看,两种局部件的局部阻力系数随流速的增加略有下降,但幅度不大。相较而言,同种情况下,球阀的局部阻力系数远小于截止阀,这与其结构密切相关。八、思考题、在测量前为什么要将设备中的空气排净,怎样才能迅速地排净?答:为什么要将空气排尽?在流动测定中气体在管路中,对流动的压力测量产生偏差,在实验中排出气体,保证流体的连续,这样流体的流动测定才能准确。怎样迅速排尽?先打开出口阀排净管路中的空气,然后关闭出口阀开U 形压差计的排气阀。2、在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的-Re 数据能否关联在一条曲线上?答:量纲分析法的特点之一就是结论具有普遍的推广性,只
27、要/相同,-R数据就能关联在一条曲线上。3、以水为工作流体所测得的-Re 关系能否适用于其他种类的牛顿型流体?为什么?答:对于其他牛顿型流体也适用。因为如果相同时,其他的流体的密度和黏度都能从它上面反应出来,所以仍然适用。4、以下测出的直管摩擦阻力与设备的放置状态有关吗?它们分别是多少?(管径、管长一样,管内走水,且 R1=R2=R3)uuu答:无 关,以 上 三 组 测 出 的 直 管 阻 力 均 相 等。由 伯 努 利 方程:fHgpguzgpguz2222121122,12f12zppHzg,其中gudlHf22?。因为 U 形压差计的高度差R 是反映两个测压点截面位能和压强能(即势能)的综合变化值。即R=(z-gz)12pp。因为 R1=2R3,u1=u2,所以三种状态下的Hf 不变,即 不变。即当 R 相同时,三种情况的摩擦阻力系数也相等。、柏努利方程与机械能衡算式有什么关系?它们的适用条件是什么?答:二者关系:机械能衡算式是伯努利方程式的理论基础。适用条件:机械能衡算适用于所有流体。伯努利方程只适用于不可压缩的理想流体在稳定状态下恒温流动的情况。是机械能衡算式的一种特殊及常用的情况。注:本实验的流体满足柏努利方程,推导水平无变径直管道摩擦阻力系数的时候就采用了柏努利方程。
限制150内