2021年中考数学复习题考点25:矩形.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021年中考数学复习题考点25:矩形.pdf》由会员分享,可在线阅读,更多相关《2021年中考数学复习题考点25:矩形.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页 共 18 页2021 年中考数学复习题:考点25 矩形一选择题(共6 小题)1(遵义)如图,点P 是矩形 ABCD的对角线 AC上一点,过点 P 作 EF BC,分别交 AB,CD于 E、F,连接 PB、PD若 AE=2,PF=8 则图中阴影部分的面积为()A10 B12 C 16 D18【分析】想办法证明SPEB=SPFD解答即可【解答】解:作 PMAD于 M,交 BC于 N则有四边形 AEPM,四边形 DFPM,四边形 CFPN,四边形 BEPN都是矩形,SADC=SABC,SAMP=SAEP,SPBE=SPBN,SPFD=SPDM,SPFC=SPCN,SDFP=SPBE=28
2、=8,S阴=8+8=16,故选:C2(枣庄)如图,在矩形ABCD中,点 E是边 BC的中点,AEBD,垂足为 F,则 tanBDE的值是()ABC D第 2 页 共 18 页【分析】证明 BEF DAF,得出 EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出 EF=DE,设 EF=x,则 DE=3x,由勾股定理求出DF=2x,再由三角函数定义即可得出答案【解答】解:四边形ABCD是矩形,AD=BC,ADBC,点 E是边 BC的中点,BE=BC=AD,BEF DAF,=,EF=AF,EF=AE,点 E是边 BC的中点,由矩形的对称性得:AE=DE,EF=DE,设 EF=x,则 DE=3
3、x,DF=2x,tanBDE=;故选:A3(威海)矩形 ABCD与 CEFG,如图放置,点 B,C,E共线,点 C,D,G共线,连接 AF,取 AF的中点 H,连接 GH 若 BC=EF=2,CD=CE=1,则 GH=()A1 BC D第 3 页 共 18 页【分析】延长 GH交 AD于点 P,先证 APH FGH得 AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案【解答】解:如图,延长GH交 AD于点 P,四边形 ABCD和四边形 CEFG 都是矩形,ADC=ADG=CGF=90 ,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,又H是 AF的中点,AH=F
4、H,在APH和FGH中,APH FGH(ASA),AP=GF=1,GH=PH=PG,PD=AD AP=1,CG=2、CD=1,DG=1,则 GH=PG=,故选:C4(杭州)如图,已知点P 是矩形 ABCD内一点(不含边界),设PAD=1,PBA=2,PCB=3,PDC=4,若 APB=80 ,CPD=50 ,则()第 4 页 共 18 页A(1+4)(2+3)=30 B(2+4)(1+3)=40C(1+2)(3+4)=70 D(1+2)+(3+4)=180【分析】依据矩形的性质以及三角形内角和定理,可得ABC=2+80 1,BCD=3+130 4,再根据矩形 ABCD中,ABC+BCD=180
5、 ,即可得到(1+4)(2+3)=30【解答】解:ADBC,APB=80 ,CBP=APB DAP=80 1,ABC=2+80 1,又 CDP中,DCP=180 CPD CDP=130 4,BCD=3+130 4,又矩形 ABCD中,ABC+BCD=180 ,2+80 1+3+130 4=180,即(1+4)(2+3)=30,故选:A5(聊城)如图,在平面直角坐标系中,矩形OABC的两边 OA,OC分别在 x轴和 y 轴上,并且 OA=5,OC=3 若把矩形 OABC绕着点 O逆时针旋转,使点A恰好落在 BC边上的 A1处,则点 C的对应点 C1的坐标为()第 5 页 共 18 页A(,)B(
6、,)C(,)D(,)【分析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【解答】解:过点C1作 C1Nx 轴于点 N,过点 A1作 A1Mx 轴于点 M,由题意可得:C1NO=A1MO=90,1=2=3,则A1OMOC1N,OA=5,OC=3,OA1=5,A1M=3,OM=4,设 NO=3x,则 NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=(负数舍去),则 NO=,NC1=,故点 C的对应点 C1的坐标为:(,)故选:A6(上海)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()第 6 页 共 18 页AA=B BA=C
7、 CAC=BD DABBC【分析】由矩形的判定方法即可得出答案【解答】解:A、A=B,A+B=180 ,所以 A=B=90 ,可以判定这个平行四边形为矩形,正确;B、A=C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、ABBC,所以 B=90,可以判定这个平行四边形为矩形,正确;故选:B二填空题(共6 小题)7(金华)如图 2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边 AB,BC上,三角形的边 GD在边 AD上,则的值是【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB
8、,BC,进一步求出的值【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,=故答案为:8(达州)如图,平面直角坐标系中,矩形OABC的顶点 A(6,0),C(0,第 7 页 共 18 页2)将矩形 OABC绕点 O顺时针方向旋转,使点 A 恰好落在 OB上的点 A1处,则点 B的对应点 B1的坐标为(2,6)【分析】连接 OB1,作 B1HOA 于 H,证明 AOB HB1O,得到 B1H=OA=6,OH=AB=2,得到答案【解答】解:连接OB1,作 B1HOA于 H,由题意得,OA=6,AB=OC 2,则 tanBOA=,BOA=30 ,OBA=60 ,由旋转的性质可知,
9、B1OB=BOA=30 ,B1OH=60 ,在AOB和HB1O,AOB HB1O,B1H=OA=6,OH=AB=2,点 B1的坐标为(2,6),故答案为:(2,6)9(上海)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩第 8 页 共 18 页形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高如图 2,菱形 ABCD的边长为 1,边 AB水平放置如果该菱形的高是宽的,那么它的宽的值是【分析】先根据要求画图,设矩形的宽AF=x,则 CF=x,根据勾股定理列方程可得结论【解答】解:在菱形上建立如图所示
10、的矩形EAFC,设 AF=x,则 CF=x,在 RtCBF中,CB=1,BF=x 1,由勾股定理得:BC2=BF2+CF2,解得:x=或 0(舍),即它的宽的值是,故答案为:10(连云港)如图,E、F,G、H 分别为矩形 ABCD的边 AB、BC、CD、DA 的中点,连接 AC、HE、EC,GA,GF 已知 AGGF,AC=,则 AB的长为2第 9 页 共 18 页【分析】如图,连接 BD 由ADG GCF,设 CF=BF=a,CG=DG=b,可得=,推出=,可得 b=a,在 RtGCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD四边形 ABCD是矩形,ADC=DCB=90
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年中 数学 复习题 考点 25 矩形
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内